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Abstract. Adaptation refers to the process of changing behavior in response to a

variation in the environment. We propose a model of an adaptive individual that

contemplates two forces: on the one hand the individual benefits from adopting the

ideal response to the new environment, but on the other hand, behavioral change is

costly. We lay down the axiomatic foundations of the model. We then study two

applications. The first studies a situation where ideal behavior depends on the re-

sponse of another adaptive individual. The second analyzes the case where the ideal

response is influenced by the strategic interaction in a cheap talk-like game.
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1. Introduction

Individuals often experience shocks in their environments. The standard approach in

economics entails an immediate adaptation to the new situation. However, research in

biology and psychology has long seen adaptation to changing environments as a gradual

process of cumulated behavioral changes.1 Building on this evidence, in this paper we

offer, for the first time, a framework to study behavioral adaptation that explains why

and how an individual may gradually adapt her behavior to new situations. In essence,

we envision an individual that rationally understands the benefits of responding to the

new situation, but for whom behavioral change is costly as it comes with the necessity of

modifying well-formed and easy-to-apply internal routines. As a result, the individual

must integrate both forces and gradually adapt.

Consider for instance an individual that has suffered a medical problem and must face

a change of diet. Alternatively, think of changes in one’s time allocation patterns after

starting a new career or changing one’s individual values upon entering a new society.

In all these situations, there is an initial behavior and the individual is affected by

an important shock in the environment that suggests a different ideal response. The

question arises on how to move from the initial to the ideal response. On the one

hand, the individual is reluctant to change because she suffers a cost whenever her

responses deviate from past behavior. On the other hand, the individual would like

to adapt immediately to the new ideal response, because not doing so comes with a

1Evolutionary biology focuses on the changes over the life time of species whereas developmental

psychology deals with changes over the life time of an individual. Some classical references can be

found in Helson (1964), Williams (1966), Valsiner and Connolly (2002) and Zeigler (2014).
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cost. Therefore, the individual contemplates the two forces, and consequently selects

a sequence of behaviors to rationally accommodate them.

We incorporate the previous considerations in the following simple model

min
{xt}∞t=1

∞!

t=1

δt−1
"
α

K!

k=1

|x(t−1)k − xtk|q + (1− α)
K!

k=1

|x∗k − xtk|q
#
,

where δ is the discount factor of the individual, α captures the relative weight of

adaptation costs, and (1− α) represents the cost of deviating from the ideal response,

x∗. Costs are modeled through polynomial distance functions, which is a standard way

of introducing monotone and convex preferences. This is a simple model of adaptive

behavior with several advantages.

First, the model is tractable, allowing us to completely determine which sequences

of behavior can be the optimal response to some adaptation problem. The main re-

sult of the paper provides empirical content to the model. Theorem 1 axiomatically

characterizes the model using two properties: A monotonicity property regulating the

direction of change in behavior and a constant difference ratio property controlling the

rate of change over different periods. In turn, this allows us to provide the unique

solution to the adaptation problem, which facilitates the study of comparative statics

and the analysis of welfare.

Second, the model is flexible enough to facilitate the study of adaptive behavior in

a number of diverse settings. We illustrate this point by way of two applications of

the model; strategic coordination and strategic communication. For the first applica-

tion, we study the case where two adaptive individuals with different initial behaviors
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benefit from coordinating on a common behavioral code. Think, for example, of bilat-

eral agreements where convergence in behaviors is desirable but affected by strategic

considerations. We study the resulting dynamic game and, in Theorem 2, show the

existence of a Markov-perfect equilibrium where individuals gradually adapt towards

each other’s behavior. In the second application, we introduce uncertainty on the ideal

response in a setting where an informed sender passes a signal on the uncertain ideal

response to an uninformed receiver. We understand the receiver as an adaptive indi-

vidual, while the sender only cares about the deviations between the behavior of the

receiver and the realized ideal response. For instance, suppose a doctor that, after a

medical examination, finds that the patient should adopt a specific diet. The doctor

understands well the adaptive behavior of the patient and may strategically commu-

nicate a non-ideal diet in order to manipulate this adaptive process. The patient, at

the same time, may also anticipate the strategic considerations of the doctor, and be-

have accordingly. We show that the setting transforms into a cheap-talk game and, in

Theorem 4, we characterize the partition equilibria of the game.

We close this introduction by relating our paper to the literature. Research on inter-

temporal choice with changing behavior can be found in habit formation/addiction

models. Among these studies the closest to our approach is Becker and Murphy (1988).2

They study a model of rational addiction that involves changes in behavior as the out-

come of a utility maximization process with time consistent preferences. Becker and

Murphy analyze the comparative dynamics of addiction in a perfect capital market

2Other important works include Pollak (1970), O’Donoghue and Rabin (1999), Gruber and Koszegi

(2001), Bernheim and Rangel (2004) or Gul and Pesendorfer (2007).
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environment assuming that instantaneous utility is a function of the current consump-

tion as well as the stock of past consumption. The crucial difference with their paper

is conceptual. In our setting we assume there is a given ideal response, which is either

exogenously determined or is the result of some strategic interaction, allowing us to

study the notion of adaptation to the ideal response, which is the key concept we study

in the paper. In terms of results, we also diverge by providing characterizing properties

of this type of behavior, as well as applications of our model to a variety of settings.

The cost of adaptation can also be related to the literature on changing tastes in

dual-self models.3 To see our model from this perspective, one may think of a short-

sighted self that prefers to stick to the current behavior and a rational self that perfectly

understands the benefits of immediate adaptation to the ideal response. Under this

interpretation, and contrary to most of these models, the behavior of our agent is

the result of an integration of these selves. In that sense, the closest paper to ours

would be Loewenstein and O’Donoghue (2004) since their ‘two minds’ model brings

also a maximization problem of a weighted utility function. However their model lives

in a static world and modeling dynamics is fundamental to understand the cost of

adaptation.

Akerlof (1997) studies the case where an individual considers the average behavior

of the individuals in their reference group, and either aims at minimizing the distance

with average behavior, as in the case of conformism, or at positively deviating from

it, as in the status seeking model. Hence, we share the view with Akerlof (1997)

3See the classical work of Strotz (1955) and also, Thaler and Shefrin (1981), Schelling (1982),

Benabou and Pycia (2002), Fudenberg and Levine (2006), Pennesi (2021) and references therein.
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in considering behavioral targets, that may have a social nature, as we discuss in

Section 3.1. However, we deviate by focusing in the dynamic process of adaptation

towards them. This dynamic process can also be interpreted as the internalization of

prescriptions that is dictated by a new identity, as first formalized in economics by

Akerlof and Kranton (2000). The target behavior then corresponds to the behavior

associated with this identity and the optimal internalization process appears as the

solution to the negotiation between initial preferences and the new set of values.

Finally, a direct application of our setting can be found in models of firm-level deci-

sion making with adjustment costs within the macroeconomics literature. Models with

convex adjustment costs are utilized mainly to explain gradually adjusting firm-level

decision variables observed in the data, such as factor demand in partial-adjustment

models (Hamermesh and Pfann, 1996; Hall, 2004), or investment demand in general

and in q-theoretic models (Gould, 1968; Treadway, 1969; Yoshikawa, 1980; Abel and

Eberly, 1994). Certainly, our microeconomics perspective differentiates us from this

literature. We provide an axiomatization of the model in terms of testable properties

for the observable behavior, enabling the inference of unobservable parameters of the

model, and offer applications in order to study strategic considerations related to the

behavioral adaptation process.

The organization of the paper is as follows: Section 2 introduces the set-up as well

as the characterization of the model. Section 3 is devoted to the two applications,

strategic coordination and strategic communication, respectively. Section 4 concludes.

All proofs are left to an appendix.
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2. The Adaptation Problem

Denote by ∆ the simplex of dimension K.4 The initial behavior of the individual

is denoted by x0 ∈ ∆, while the ideal response is denoted by x∗ ∈ ∆. We assume

polynomial cost functions of degree q > 1. Given the relative weight of the adaptation

cost with respect to the cost of deviating from the ideal response, α ∈ [0, 1], and

the discount factor of the individual, δ ∈ (0, 1), our individual solves what we call

the Adaptation Problem with parameters (x0, x∗,α, δ), i.e., the individual chooses a

sequence of actions {xt}∞t=1 in the simplex solving

min
{xt}∞t=1

∞!

t=1

δt−1
"
α

K!

k=1

|x(t−1)k − xtk|q + (1− α)
K!

k=1

|x∗k − xtk|q
#
.

We now investigate the testable implications of the model, by describing the optimal

sequences emerging from this cognitive process. Formally, we address the question of

what are the properties of an observed sequence of behaviors, {xt}∞t=1, that indicate

that the individual is optimally resolving an underlying Adaptation Problem. In other

words, the question arises on whether there is an Adaptation Problem with parameters

(x0, x∗,α, δ) such that the observed behavior {xt}∞t=1 by the analyst is the solution to

the problem. It turns out that only two intuitive properties are necessary and sufficient

to characterize such behavioral sequences. To present them, let Dtk denote the change

in behavior at time t for component k, i.e. Dtk = xtk − x(t−1)k.

Monotonicity (Mon). For any k and for any t > 1: Dtk > 0 ⇒ D(t+1)k > 0.

4To ease the exposition, we have chosen to work on a simplex, that intuitively captures the moti-

vating examples in the introduction. However, the results of this section can be easily reproduced for

other standard spaces, including [0, 1]K , RK
+ or RK .
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Mon simply states that if we observe individual behavior over one dimension adjust-

ing in a certain direction, further adjustments in this dimension must have exactly the

same structure.

Constant Difference Ratio (CDR). Let k, k′ such that {xtk} and {xtk′} are not

constant sequences. Then, for any t, t′ > 1:
D(t+1)k

Dtk
=

D(t′+1)k′

Dt′k′
.

CDR requires, for all dimensions and periods, the same constant rate of behavioral

change. In other words, there is no asymmetric adaptation pattern for different dimen-

sions and the individual shows no accelerating or decelerating rates of adaptation.

Theorem 1. The sequence {xt}∞t=1 ∈ ∆∞ satisfies Mon and CDR if and only if it is

the (unique) solution of an Adaptation Problem.

Theorem 1, and its proof, provides several important results: (i) it permits to delin-

eate when the data available to the analyst, i.e. the sequence {xt}∞t=1, can be understood

as the behavior of an individual solving an Adaptation Problem, (ii) it characterizes

the solution to the Adaptation Problem, and (iii) when the individual behaves accord-

ing to the model, it shows how to recover from the observed behavior the unobserved

parameters (x0, x∗,α, δ) of the model. We now proceed to discuss in more detail each

one of these points.

As for the first point, Theorem 1 establishes that a sequence of behaviors {xt}∞t=1

can be understood as the result of solving an Adaptation Problem if and only if the

sequence satisfies properties Mon and CDR. Mon and CDR are simple properties, with
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the aim of facilitating the testability of the model, more than aiming to lay down

normative properties on behavioral processes.

As for point (ii), Theorem 1 shows that the Adaptation Problem has a unique so-

lution, that is of the form xt = λ(α, δ)x∗ + (1 − λ(α, δ))xt−1 for all t. The individual

adapts at every period t a fraction λ(α, δ) ∈ [0, 1] of the distance between the current

situation, xt−1, and the ideal response x∗, a fraction that we call the rate of adaptation.

This rate is dimension and time-invariant and depends uniquely on the parameters α

and δ. From equation (5.3), it is straightforward to see that λ(α, δ) is increasing in

the discount factor δ. The intuition behind this idea is as follows: If the individual

becomes more patient, future costs due to inadaptation become more relevant, leading

the agent to reduce the amount of such future costs by being more adaptive at each

period. Similarly differentiating equation (5.3) with respect to α, one can see that

λ(α, δ) is decreasing in α. The larger the cost of adaptation, the lower the individual

adapts at each period of time. Obviously, closed-form solutions for λ(α, δ) require spe-

cific values of q. For instance when we focus our attention on the common quadratic

costs, i.e, q = 2, we derive the following continuous function for λ(α, δ):

λ(α, δ) =

$
%%&

%%'

1 whenever α = 0,

(αδ−1)+
√
1+2αδ−4α2δ+α2δ2

2αδ
otherwise.

As for the recoverability of the parameters, point (iii) above, Theorem 1 allows the

analyst to pinpoint from the behavioral data {xt}∞t=1 the underlying parameters of the

Adaptation Problem. Suppose that {xt}∞t=1 is a non-constant sequence. The initial
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response x0 can be uniquely identified as x0 = x1−λx∗
1−λ

, with λ = x2−x1

x∗−x1
. The ideal

response can also be uniquely identified as x∗ = limt xt. In principle different values of

α and δ may correspond to the same rate of adaptation λ. However identifying one of

the parameters leads to a unique identification of the other. One could therefore use

standard elicitation tests of the discount factor parameter to ultimately identify the

adaptation cost parameter α.

We now briefly remark on welfare. In order to do so we derive the value function,

given the solution to the Adaptation Problem. Note that the recursive substitution

in the solution to the Adaptation Problem yields xt = (1 − λ(α, δ))tx0 + (1 − (1 −

λ(α, δ))t)x∗, for all t > 0, and hence, the one-period costs at t would be αλ(α, δ)q(1−

λ(α, δ))q(t−1)
(K

k=1 |xk0 − x∗k|q and (1− α)(1− λ(α, δ))qt
(K

k=1 |x∗k − xk0|q. The value

function for λ(α, δ) ∈ (0, 1) would then become V (x0) =
(∞

t=1 δ
t−1[αλ(α, δ)q(1 −

λ(α, δ))q(t−1)
(K

k=1 |xk0 − x∗k|q + (1 − α)(1 − λ(α, δ))qt
(K

k=1 |x∗k − xk0|q] =

αλ(α,δ)q+(1−α)(1−λ(α,δ))q

1−δ(1−λ(α,δ))q

(K
k=1 |x∗k − x0k|q = ω(α, δ)

(K
k=1 |x∗k − x0k|q. This expression

neatly reflects the behavioral loss of adapting behavior. It is multiplicatively separa-

ble, with two intuitive terms. The latter simply captures a measure of the gap between

the initial and the ideal response. The former, a function of the behavioral parameters

α and δ only, represents how costly it is for the individual to cover such gap. Let us

focus again on the interesting case where the behavioral sequence is non-constant. It

follows that higher valuation of the future results in larger welfare loss, i.e., ∂ω
∂δ

> 0.

On the other hand, the effect of α on welfare loss is less obvious. Expressing δ as an

implicit function of α and λ and substituting it in ω(·) reveals that ω(·) is equal to



A BEHAVIORAL MODEL OF ADAPTATION 11

αλ(α, δ)q−1 and, ultimately, allows to show that ω(·) is strictly concave in α.5 As a

consequence, α has both a direct effect and an indirect effect through the adaptation

rate. For lower levels of α, the direct effect outweights and welfare loss increases with

α whereas for higher levels of α the opposite takes place.

3. Strategic Targeting

We have assumed so far that the individual internalizes an exogenous ideal response

and attempts to adjust accordingly. In many economic situations, it happens to be the

case that the ideal response emerges as the result of different strategic considerations.

In this section, we study two applications where this is the case.

In the first subsection, we examine a situation where two adaptive individuals would

like to coordinate on their behavior. However, since moving away from current behavior

is costly, there are strategic considerations in the adaptation process of both individuals,

resulting in a dynamic game where the optimal strategy for each individual depends

on not only their own past behavior but also on the simultaneous behavior of the other

individual. In the second subsection, we consider a situation where a second individual

has private information about the uncertain ideal response of the decision maker and,

having understood the adaptive nature of the decision maker, communicates this ideal

response strategically. Our study of strategic communication, therefore, requires us

to show how to incorporate the treatment of uncertainty in the precise level of ideal

response. Unlike the first application this setting does not define a dynamic game,

5To see that, we first compute ∂λ
∂α from equation (5.3) and substitute it in ∂ω

∂α , before differentiating

it once more.
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instead it specifies a cheap-talk game where the response of the receiver has a dynamic

nature. To simplify the exposition and the presentation of results, we assume in this

section that the space of possible decisions is [0, 1] and that q = 2.

3.1. Strategic Coordination. Consider a situation where two individuals with dif-

ferent initial behaviors would like to coordinate on a common behavioral code, yet

changing their behavior is costly. It is in their interest to converge as much as possible

on common rules, but they have well-established routines learnt from their personal

experiences which hamper the adoption of a common standard. Certainly both of them

would prefer the other individual to adopt their own standard immediately, but as long

as there is a strictly positive cost to adaptation, this will never constitute an equilib-

rium behavior, as hinted by the baseline model. In this setting the ideal response is

not exogenously given, but is dynamically determined by the interactive behavior with

another individual. We investigate here the equilibrium dynamics of this situation.

Let (αx, δx) and (αy, δy) denote the personal characteristics of two adaptive indi-

viduals with initial behaviors given by x0 and y0, respectively. Let αx,αy ∈ (0, 1)

and x0 ∕= y0 to eliminate degenerate equilibria. A Coordination Problem given by

the parameters (x0,α
x, δx; y0,α

y, δy) refers to the case where each individual chooses a

sequence of actions, {xt}∞t=1 and {yt}∞t=1 respectively, in order to minimize their corre-

sponding life-time cost functions given by:

∞!

t=1

(δx)t−1
"
αx(xt−1 − xt)

2 + (1− αx)(yt − xt)
2
#
,

∞!

t=1

(δy)t−1
"
αy(yt−1 − yt)

2 + (1− αy)(xt − yt)
2
#
.
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This setting now defines a dynamic game where the actions chosen by each individual

determine the state for next period for both of them. Let σi = (σi
t)

∞
t=1 denote a strategy

for individual i = x, y.

In the following result we show that the strategy profile (σx, σy) defined by σi
t(xt−1, yt−1) =

γijt−1+(1−γi)it−1 for i, j ∈ {x, y} with i ∕= j for all t > 0 constitutes a Markov-perfect

Nash equilibrium for a unique pair of γx, γy ∈ (0, 1). This equilibrium observationally

happens to coincide with one where both individuals gradually adapt, at the same rate

of adaptation, towards a common response.

Theorem 2. The Coordination Problem (x0,α
x, δx; y0,α

y, δy) has a Markov-perfect

Nash equilibrium in which both individuals converge to γy

γx+γyx0+
γx

γx+γy y0 at a common

rate of adaptation γx + γy, with γx, γy ∈ (0, 1).

Theorem 2 shows that the strategic coordination problem of the two players aiming

at adopting common standards has a simple, intuitive equilibrium. The common ideal

response is the result of the linear combination of the initial responses, x0 and y0, using

the coefficients γy

γx+γy and γx

γx+γy , respectively. The scalars γx and γy can be obtained

from equation (5.6) and the corresponding version for γy. In addition, Theorem 2 shows

that both players adopt exactly the same rate of adaptation, given by γx+γy, towards

this equilibrium behavior. From the point of view of testability, this equilibrium has

the following properties on data: (i) Mon is satisfied by both individuals, (ii) CDR is

satisfied by both individuals and also across individuals, and (iii) the two sequences

converge to the same point.
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Interestingly, note that the process of adaptation in this Coordination Game has

characteristics of public goods settings. Moving away from the initial response entails

a personal cost and at the same time generates a positive externality on the other player,

as the distance between the behavior of the two players is reduced. This immediately

implies that the equilibrium described will be inefficient; specifically, the maximization

of aggregate welfare would require players to adapt more quickly than they are when

they behave strategically. We illustrate this point for the symmetric case αx = αy = α

and δx = δy = δ. In this case it follows immediately that the common ideal response,

both at equilibrium and the efficient one, is x0+y0
2

. Therefore, we can focus on the

comparison of the corresponding rates of adaptation. The optimality condition derived

from the Bellman equation for the utilitarian problem would be αγx−2(1−α)(1−γx−

γy) − δαγx(1 − γx − γy) = 0. Since the symmetry implies γx = γy = γ, this equation

can be written as

(3.1) αγ − 2(1− α)(1− 2γ)− δαγ(1− 2γ) = 0.

Then equation (5.5), the optimality condition from individual x’s problem can be

manipulated to resemble the former as

(3.2) αγ − 2(1− α)(1− 2γ)− δαγ(1− 2γ) + {(1− α)(1− 2γ)[1 + δγ(1− 2γ)]} = 0.

Now notice that the expression inside the paranthesis is strictly positive and the ex-

pression before that, which is basically the left hand side of equation (3.1), is a strictly

increasing function of γ. Hence for all (α, δ), the γ that solves equation (3.1) is higher

than the one that solves equation (3.2). The efficient rate of adaptation for both of
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the individuals, 2γ from (3.1), is always strictly greater than their equilibrium rate of

adaptation, 2γ from (3.2).

3.2. Strategic Communication. Consider a situation in which an adaptive indi-

vidual (from now on, the receiver) inquires of another individual (from now on, the

sender), the ideal response before deciding on a sequence of behaviors. The sender

can perfectly observe the ideal response, only cares about receiver’s deviations from

it and is fully aware of the adaptive nature of the receiver. Consequently, the sender

has incentives to manipulate the observed ideal response, attempting to influence the

adaptation of the receiver. Also, having anticipated the strategic intentions of the

sender, the receiver may internalize a different ideal response to the communicated

one. For example, consider the case in which a patient is the receiver, a doctor is the

sender, and as a consequence of a health shock, a new ideal response is needed. The

doctor hopes for an immediate adaptation of the patient to the new situation, but the

gradually adaptive nature of the patient may delay the process in time. If the doctor

believes that the patient is reluctant to adapt immediately, she may communicate a

more extreme target than it is actually necessary, just to provoke behaviors that are

closest to the ideal response. Similarly, the patient can anticipate the strategic inten-

tions of the doctor and react accordingly by internalizing an ideal response different to

the one that has been communicated.

We assume that the ideal response is governed by the continuous density function

f(x∗) with mean xf and variance vf . We model the receiver as an expected cost

minimizer where costs are evaluated according to the function described in Section 2,
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and the sender’s cost function as
(∞

t=1 δ
t−1
s (x∗ − xt)

2, where δs is her discount factor.

We also assume that α ∈ (0, 1), in order to focus on the case in which the sender and

the receiver have only partially aligned preferences. All the aspects of the game are

common knowledge except the realization of x∗.

After observing the ideal response, the sender passes a signal x̂, which induces poste-

rior beliefs about x∗ for the receiver. The main difference with the baseline model from

the perspective of the receiver is this uncertainty over the target behavior. Therefore,

we first establish how the optimal behavior of the receiver changes under uncertainty

before solving the communication game. The following theorem shows that at the

presence of uncertainty about x∗, the receiver gradually adapts at a rate of adaptation

λ(α, δ) to the expected value of the ideal response. Suppose the receiver entertains

posterior beliefs on the ideal response given by the density function g(x∗), with mean

xg and variance vg.

Theorem 3. The solution to the Random Adaptation Problem (x0, g(x∗),α, δ), is xt =

λ(α, δ)xg + (1− λ(α, δ))xt−1, for all t > 0, with λ(α, δ) defined as in Section 2.

Hence what matters for the receiver is the expected value of the ideal response. We

assume that upon receiving the signal x̂ ∈ [0, 1], the receiver uses Bayesian updating

for her prior, i.e. p(x∗ | x̂) = q(x̂ | x∗)f(x∗)
) * 1

0
q(x̂ | x)f(x)dx. In order to be able

to solve the equilibrium explicitly, let us assume that f is uniform. Then, following

Crawford and Sobel (1982), a Bayesian Nash equilibrium of this game is a family of

(possibly stochastic) signaling rules for the sender q(x̂ | x∗), i.e.
* 1

0
q(x̂ | x∗)dx̂ = 1,

and an action rule for the receiver {xt(x̂)} with the following properties: (i) for each
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x∗ ∈ [0, 1] any of the signals used with positive probability in q(x̂ | x∗) minimizes the

sender’s cost given the action rule of the receiver and (ii) for each x̂ ∈ [0, 1], and taking

the sender’s signalling rule as given, the action {xt(x̂)} minimizes receiver’s expected

cost up on Bayesian updating.

The main difference from the classical cheap-talk setting is the gradual adaptation

of the behavior. In the following theorem we deal with this by building on Theorem

3. We collapse the dynamics thanks to the recursive structure of the optimal action

of the receiver and show that both cost functions satisfy the properties required for

a partition equilibrium. To simplify the exposition, denote by xf (a, b) the mean of

the ideal response, given the prior in the interval [a, b], and by {xt(a, b)} the sequence

converging to xf (a, b) given the rate of adaptation of the receiver, λ.

Theorem 4. There exists an integer N̄ such that, for every 1 ≤ N ≤ N̄ , there ex-

ists {a0, . . . , aN} with 0 = a0 ≤ · · · ≤ aN = 1 for which a partition equilibrium

({xt(x̂)}, q(x̂ | x∗)) exists, with: (i) q(x̂ | x∗) is uniform, supported on [ai, ai+1] if

x∗ ∈ (ai, ai+1), (ii)
(∞

t=1 δ
t−1
s (ai − xt(ai, ai+1))

2 =
(∞

t=1 δ
t−1
s (ai − xt(ai−1, ai))

2, (iii)

{xt(x̂)} = {xt(ai, ai+1)} whenever x̂ ∈ [ai, ai+1], and (iv) ai+1 = Hai − ai−1 + 2 − H,

where H(α, δr, δs) =
2(1−δs(1−λ))(2−λ)

λ(1+δs(1−λ))
for i < N .

Theorem 4 solves for the partition equilibria in the communication game, in which

the receiver has adaptive behavior. Despite the misalignment of preferences, the sender

is able to partially reveal information on the ideal response to the adaptive receiver.

The equilibria work as follows: for a partition of [0, 1] into intervals, the sender merely
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communicates the interval to which the ideal response belongs, and the receiver gradu-

ally adapts, at rate of adaptation λ(α, δ), to the expected value of the ideal response. In

our doctor-patient example, the doctor would categorize signals into degrees of sever-

ity of the illness or diet requirements, and communicate to the patient the category to

which her case belongs to.

4. Final Remarks

The purpose in this paper has been to offer a simple but functional theoretical frame-

work to deal with the question of behavioral adaptation to changing environments, a

feature that we believe is the norm rather than the exception in real settings. Inspired

by research in psychology and biology, our model envisions adaptation as a gradual

process of behavioral change.

We have axiomatically characterized the solution to the model. Namely, we have

given simple behavioral conditions on sequences of choice that identify whether be-

havior can be understood as the result of behavioral adaptation as predicted by our

model. Moreover, we have obtained the unique solution to the model and give the

optimal rate of adaptation to the new ideal response. We have shown the comparative

statics of the solution with respect to the parameters of the model, and have discussed

behavioral welfare. All this analysis has allowed us to offer an in-depth understanding

of the predictions and implications of our model.

It has been our aim, also, to show the versatility of the model. To do so we have

developed two natural applications of the model involving strategic considerations. In

the first application we study the case where two players would like to decide on a
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common ideal standard. We have shown that this case has characteristics of public

goods settings, since moving away from one’s initial behavior comes at a personal cost,

but generates positive externalities on the other player. In the second application

we model the strategic determination of an ideal response, in a cheap-talk like game

setting. The receiver settles her ideal response as the result of the signal sent by a

sender, taking into consideration the strategic incentives of the sender. With these

two applications we have aimed at highlighting that our model of adaptive individuals

allows to model strategic rational interaction, in familiar settings.

We believe that our framework will be useful in understanding a variety of new is-

sues related to the very question of adaptation, and also in novel applications where

adaptation is likely to play an important role. As for the former, we may envision

adaptive individuals that revise their targets due to psychological considerations. For

example, it seems plausible that achieving goals may have a reinforcement effect on

the level of aspirations, whereas failing goals create a demeaning effect. It would be

interesting to extend our model to such a setting. As for the latter, the consideration

of adaptive individuals may be instrumental in settings like markets with advertise-

ment, political competition with informational shocks, etc. Our model of behavioral

adaptation may draw new light in these important settings, that may have important

policy implications.
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5. Appendix

Proof of Theorem 1. (⇐) We start by solving the Adaptation Problem with pa-

rameters (x0, x∗,α, δ). Notice first that, trivially, whenever α = 0, the unique solution

is xt = x∗ for all t > 0 and, whenever α = 1, the unique solution is xt = x0 for all

t > 0. We now consider the case in which α ∈ (0, 1). The Bellman equation of the

Adaptation Problem can be written as:

V (xt−1) = min{α
K!

k=1

|x(t−1)k − xtk|q + (1− α)
K!

k=1

|x∗k − xtk|q + δV (xt)}

The first order conditions are:

αq|x(t−1)k − xtk|q−1 |x(t−1)k − xtk|
x(t−1)k − xtk

+ (1− α)q|x∗k − xtk|q−1 |x∗k − xtk|
x∗k − xtk

+ δ
∂V (xt)

∂xtk

= 0.

The Benveniste-Scheinkman conditions are:

∂V (xt−1)

∂x(t−1)k

= −αq|x(t−1)k − xtk|q−1 |x(t−1)k − xtk|
x(t−1)k − xtk

.

Iterating one more period and combining with the first order conditions result in:

α|x(t−1)k − xtk|q−1 |x(t−1)k − xtk|
x(t−1)k − xtk

+

(1− α)|x∗k − xtk|q−1 |x∗k − xtk|
x∗k − xtk

= δα|xtk − x(t+1)k|q−1 |xtk − x(t+1)k|
xtk − x(t+1)k

.(5.1)
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Now, we guess the solution to be xt = λx∗ + (1 − λ)xt−1 for some λ ∈ (0, 1). Let

us verify this. Since the result is trivial whenever x∗k = x0k, we have to consider the

following cases:

x∗k > x0k ⇒ |x(t−1)k − xtk| = −(x(t−1)k − xtk)

|x∗k − xtk| = x∗k − xtk for all t.

x∗k < x0k ⇒ |x(t−1)k − xtk| = x(t−1)k − xtk

|x∗k − xtk| = −(x∗k − xtk) for all t.

Hence, equation (5.1) can be written as:

(5.2) −α|x(t−1)k − xtk|q−1 + (1− α)|x∗k − xtk|q−1 = −αδ|xtk − x(t+1)k|q−1.

Moreover, our guess also implies that (xtk−x(t−1)k) = λ(x∗k−x(t−1)k) and (x∗k−xtk) =

(1− λ)(x∗k − x(t−1)k) for all t > 0. Substituting these into (5.2), we arrive at:

−α|−λ(x∗k − x(t−1)k)|q−1+

(1− α)|(1− λ)(x∗k − x(t−1)k)|q−1 = −αδ|− λ(1− λ)(x∗k − x(t−1)k)|q−1

finally yielding

−αλq−1 + (1− α)(1− λ)q−1 = −αδλq−1(1− λ)q−1

λq−1
+ 1

(1− λ)q−1
− δ

,
=

1− α

α
.(5.3)
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The left hand side of this equation is a continous and strictly increasing function of λ

that approaches 0 and ∞ when λ approaches 0 and 1, respectively. Thus, the equality

must hold for exactly one value λ(α, δ), and we have verified the guess.

To summarize, notice that setting λ(0, δ) = 1 and λ(1, δ) = 0, we can then claim

that for every α ∈ [0, 1] and δ ∈ (0, 1), xt = λ(α, δ)x∗ + (1− λ(α, δ))xt−1 for all t > 0

constitutes a solution to the Adaptation Problem. Uniqueness of this solution follows

from the strict convexity of the one-period cost function and the fact that the domain

of the decision variable is the unit interval.

We now show that the solution satisfies Mon and CDR. Notice that λ(α, δ) ∈ {0, 1}

implies that Dtk = 0 for all k and t > 1 and both properties trivially hold. If λ(α, δ) ∈

(0, 1), it must be Dtk ∕= 0 for any t > 1 and we can obtain
D(t+1)k

Dtk
=

x(t+1)k−xtk

xtk−x(t−1)k
=

λ(α,δ)x∗k+(1−λ(α,δ))xtk−λ(α,δ)x∗k+(1−λ(α,δ))x(t−1)k

xtk−x(t−1)k
=

(1−λ(α,δ))(xtk−x(t−1)k)

xtk−x(t−1)k
= 1−λ(α, δ) > 0 for

any k and for any t > 1. This implies again both Mon and CDR and concludes the

argument.

(⇒) Let {xt}∞t=1 satisfy Mon and CDR. We first show that any sequence {xtk} is

either constant or strictly increasing or strictly decreasing. Suppose first that, for a

given k, there exists t such that Dtk > 0. By Mon, it must also be D(t+1)k > 0. But

then, by iterative application of CDR, D3k

D2k
= · · · = Dtk

D(t−1)k
=

D(t+1)k

Dtk
=

D(t+2)k

D(t+1)k
= ...,

we must have Dtk > 0 for all t > 1. Suppose now that, for a given k, there exists t

such that Dtk < 0. Then, given the fact that xt belongs to the simplex, there exists

another component k′ such that Dtk′ > 0. By CDR,
D(t+1)k

Dtk
=

D(t+1)k′

Dtk′
> 0, and we

must have D(t+1)k < 0. By iterative application of CDR, Dtk < 0 for all t > 1. We
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have then proved that every sequence {xtk} is either constant or strictly increasing or

strictly decreasing. Hence, for every k, since {xtk} is a monotone sequence in [0, 1], it

must converge. We denote the limit of this sequence by x∗k.

We now show that {xt}∞t=1 is the solution of an Adaptation Problem. If Dtk = 0 for

all t > 1 and for all k, we can simply define x0 = x1 = x∗ and {xt}∞t=1 will be the solu-

tion to (x0, x∗, 1, δ) for any δ ∈ (0, 1). Then, suppose that there exists k such that {xtk}

is not constant. Define λ = x2k−x1k

x∗k−x1k
. From the reasoning in the previous paragraph we

know that {xtk} is strictly monotone, and hence λ ∈ (0, 1). We now show recursively

that xtk = λx∗k+(1−λ)x(t−1)k holds for all t > 1. By definition, x2k = λx∗k+(1−λ)x1k.

Assume that this holds for all values up to t. We show that it also holds for x(t+1)k.

First notice that x3k−x2k = (1−λ)(x2k−x1k). By CDR,
x(t+1)k−xtk

xtk−x(t−1)k
= x3k−x2k

x2k−x1k
= (1−λ)

for all t > 1. But then, x(t+1)k−xtk = (1−λ)(xtk−x(t−1)k). By the induction argument,

we have x(t+1)k = (1−λ)xtk−(1−λ)x(t−1)k+xtk = λx∗k+(1−λ)xtk, as desired. For any

other non-constant {xtk′}, CDR also ensures that xtk′ = λx∗k′ + (1 − λ)x(t−1)k′ holds

for every t > 1. This is also trivially true for any other k′ such that {xtk′} is constant.

We then have found a value λ ∈ (0, 1) such that xtk = λx∗k + (1 − λ)x(t−1)k holds for

every k and every t > 1. Defining x0k =
x1k−λx∗k

1−λ
guarantees that x1 = λx∗+(1−λ)x0.

Hence, from the sufficiency part, we just need to find α ∈ (0, 1) and δ ∈ (0, 1) such that

λ = λ(α, δ) holds, as given by equation (5.3). Notice that λ(α, δ) is an onto function.

Then, fixing any δ ∈ (0, 1), equation (5.3) defines α ∈ (0, 1) uniquely, concluding the

proof. !
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Proof of Theorem 2. Consider individual x. The period t pay-off depends on not

only her previous action xt−1, but also on the period strategy of the other player, which

in turn is also a function of xt−1 as well as yt−1, i.e., yt = σy
t (xt−1, yt−1). We first show

that the strategy profile (σx, σy) defined by σi
t(xt−1, yt−1) = γijt−1 + (1 − γi)it−1 for

i, j ∈ {x, y} with i ∕= j for all t > 0 is indeed a Markov-perfect Nash equilibrium for a

unique pair of γx, γy ∈ (0, 1). The Bellman equation of the Coordination Problem for

individual x can be written as:

V x(xt−1, yt−1) = min{αx(xt−1 − xt)
2 + (1− αx)(σy

t (xt−1, yt−1)− xt)
2 + δxV x(xt, yt)}.

The first order condition of the right hand side of this equation is:

−2αx(xt−1 − xt)− 2(1− αx)(σy
t (xt−1, yt−1)− xt) + δx

∂V (xt)

∂xt

= 0,

and the first derivatives with respect to the state variables are given by:

∂V x(xt−1, yt−1)

∂xt−1

= 2αx(xt−1 − xt) + 2(1− αx)(σy
t (xt−1, yt−1)− xt)

∂σy
t (xt−1, yt−1)

∂xt−1

∂V x(xt−1, yt−1)

∂yt−1

= 2(1− αx)(σy
t (xt−1, yt−1)− xt)

∂σy
t (xt−1, yt−1)

∂yt−1

Iterating the first expression one more period and combining it with the first order

condition result in:

−2αx(xt−1 − xt)− 2(1− αx)(σy
t (xt−1, yt−1)− xt)+(5.4)

δx[2αx(xt − xt+1) + 2(1− αx)(σy
t+1(xt, yt)− xt+1)

∂σy
t+1(xt, yt)

∂xt

] = 0,

Now notice that for (σx, σy) as defined, we get σy
t − σx

t = yt − xt = (1 − γx −

γy)(yt−1 − xt−1) = · · · = (1− γx − γy)t(y0 − x0). Second, notice also that (xt−1 − xt) =



A BEHAVIORAL MODEL OF ADAPTATION 27

γx(xt−1 − yt−1) = −γx(1− γx − γy)t−1(y0 − x0). Since,
∂σy

t+1(xt,yt)

∂xt
= γy, equation (5.4)

becomes:

2αxγx(1− γx − γy)t−1(y0 − x0)− 2(1− αx)(1− γx − γy)t(y0 − x0)+

δx[−2αxγx(1− γx − γy)t(y0 − x0) + 2(1− αx)(1− γx − γy)t+1(y0 − x0)γ
y] = 0,

or simply,

(5.5) αxγx−(1−αx)(1−γx−γy)+δx[−αxγx(1−γx−γy)+(1−αx)γy(1−γx−γy)2] = 0.

To obtain equation (5.5), we have used the fact that γx + γy ∕= 1. This follows from

the fact that the individual faces non-zero routine costs, αx > 0, which leads her

not to adapt completely after one period. Now, equation (5.5) can be rewritten as a

second-degree equation on γx as a function of αx, δx, γy:

δx[αx(1− γy) + γy](γx)2 + [1− 2(1− αx)δxγy(1− γy)− δx(1− γy)αx]γx+(5.6)

(1− αx)(1− γy)[δxγy(1− γy)− 1] = 0.

The negative root of this expression is always smaller than 0, hence γx(αx, δx, γy)

would be the positive root, that always lies in (0, 1) (the explicit expression is omitted

as it is cumbersome). Notice that the solution to individual y’s problem would yield

γy(αy, δy, γx) ∈ (0, 1) in a similar way. The uniqueness of the pair (γx, γy) follows from

the fact that both of these functions are continuous in (0, 1) and strictly decreasing

in γy and γx, respectively. Also, notice that, in consonance with the adaptation rate

obtained in Theorem 1, the limits of γx when γy approaches to 0 and 1 are, respec-

tively, λ(αx, δx) < 1 and 0. Similarly, the limits of γy when γx approaches 0 and 1
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are, respectively, λ(αy, δy) < 1 and zero. Thus, for given (αx,αy, δx, δy), the reaction

functions must cross (only once) and hence, there exists a unique pair (γx, γy) ∈ (0, 1).

For the pair of strategies in equilibrium, (γx, γy), notice that individual x converges

to x0 +
(∞

t=1(xt − xt−1) = x0 +
(∞

t=1 γ
x(1 − γx − γy)t−1(y0 − x0) = x0 +

γx(y0−x0)
γx+γy =

γxy0+γyx0

γx+γy = γx

γx+γy y0 +
γy

γx+γyx0, as desired. With respect to the rate of adaptation,

notice that xt+1 − xt = γx(1− γx − γy)t(y0 − x0) = (1− γx − γy)(xt − xt−1) and hence,

from the reasoning in Theorem 1, the rate of adaptation of x is equal to γx + γy. The

same holds for individual y, concluding the proof. !

Proof of Theorem 3. The receiver minimizes the expected cost function E[
(∞

t=1 δ
t−1(α(xt−1−

xt)
2 + (1− α)(x∗ − xt)

2)], which can be equivalently expressed as follows:

E[·] =
∞!

t=1

δt−1α(xt−1 − xt)
2 + (1− α)E[

∞!

t=1

δt−1(x∗ − xt)
2]

=
∞!

t=1

δt−1α(xt−1 − xt)
2 + (1− α)E[

∞!

t=1

δt−1(x∗ − xg + xg − xt)
2]

=
∞!

t=1

δt−1α(xt−1 − xt)
2 + (1− α)E[

∞!

t=1

δt−1((x∗ − xg)
2 + (xg − xt)

2 + 2(x∗ − xg)(xg − xt))]

=
∞!

t=1

δt−1α(xt−1 − xt)
2 + (1− α)[

∞!

t=1

δt−1(vg + (xg − xt)
2 + E[2(x∗ − xg)(xg − xt)])].

Now, notice that E[2(x∗−xg)(xg−xt)] must be equal to zero, and hence, we can con-

clude that E[
(∞

t=1 δ
t−1(α(xt−1−xt)

2+(1−α)(x∗−xt)
2)] =

(∞
t=1 δ

t−1(α(xt−1−xt)
2+(1−

α)(xg−xt)
2)+(1−α) vg

1−δ
. It is obvious from this expression that the expected cost func-

tion is equivalent to the cost function of the baseline model with the expected value of

the ideal response xg, plus an additional component that does not depend on xt. Thus
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the solution follows immediately from Theorem 1 as xt = λ(α, δ)xg +(1−λ(α, δ))xt−1,

for all t > 0. !

Proof of Theorem 4. From Theorem 3, we know that given g(x∗), the cost minimizing

action for the receiver is to choose {xt} such that xt = λxg + (1− λ)xt−1, for all t > 0.

By using this recursive process and the fact that α, δ,λ ∈ (0, 1), we can rewrite the

cost functions of both the sender and the receiver as a sole function of xg instead of

using the entire sequence of behaviors. Formally:

Cs(xg, x∗; x0,α, δ, δs) =
(x∗ − xg)

2

1− δs
+

2(1− λ)(x∗ − xg)(xg − x0)

1− δs(1− λ)
+

(1− λ)2(xg − x0)
2

1− δs(1− λ)2
,

Cr(xg, x∗; x0,α, δ) =
(1− α)(x∗ − xg)

2

1− δ
+

2(1− α)(1− λ)(x∗ − xg)(xg − x0)

1− δ(1− λ)

+
[αλ2 + (1− α)(1− λ)2](xg − x0)

2

1− δ(1− λ)2
.

These functions are twice continuously differentiable functions with ∂2Ci

∂x2
g

> 0 and

∂2Ci

∂x̄xg
< 0, i ∈ {s, r}. Therefore, the existence of the equilibrium as described fol-

lows from Theorem 1 of Crawford and Sobel (1982). Having received the message

that the ideal response belongs to (ai, ai+1), the posterior on this interval will also

be uniform and the receiver will gradually adapt to the point ai+ai+1

2
. The inter-

vals can be determined through the arbitrage condition
(∞

t=1 δ
t−1
s (ai − xt(ai, ai+1))

2 =

(∞
t=1 δ

t−1
s (ai − xt(ai−1, ai))

2. That is, if the signal belongs to the boundary of two

intervals, the sender must be indifferent between the gradual adaptation to the low or

the high interval. Using the uniformity assumption, algebraic manipulation shows that
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this simply becomes a second degree difference equation ai+1 = Hai − ai−1 + 2 − H,

where H = 2(1−δs(1−λ))(2−λ)
λ(1+δs(1−λ))

> 2. Hence, the solutions to the difference equation are of

the form k1r
i
1 + k2r

i
2 + x0, where r1 = H+

√
H2−4
2

and r2 = H−
√
H2−4
2

are the different

real roots of the associated characteristic function. Since a0 = 0 and aN = 1, the con-

stants become k1 =
(1−rN2 )x0−1

rN2 −rN1
and k2 =

1−(1−rN1 )x0

rN2 −rN1
, providing ultimately the complete

partition with N intervals. !


