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Abstract. In the context of stochastic choice, we introduce an individual decision

model which admits a cardinal notion of peer influence. The model presumes that

individual choice is not only determined by idiosyncratic evaluations of alternatives

but also by the influence from the observed behavior of others. We establish that

the equilibrium defined by the model is unique, stable and falsifiable. Moreover the

underlying preference and influence parameters as well as the structure of the un-

derlying network are uniquely identified from, arguably, limited data. The baseline

model includes two individuals with conformity motives. Generalizations to multi-

individual settings and negative interactions are also introduced and analyzed.
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1. Introduction

It is a well-established fact that individual choices are directly influenced by the

choices of one’s peers.1 Identification of peer influence out of observable behavior has
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1There is an abundance of evidence corroborating peer influence in a variety of social contexts: Peer
behavior has a significant influence not only on a student’s school achievement (Calvo-Armengol et al.,
2009), but also on social behavior such as consumption of recreational activities, drinking, smoking,
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been a challenging problem for social scientists for decades.2 At the heart of this

issue lies Manski’s reflection problem (Manski, 1993): Behavioral similarities among

peers can be caused by correlated unobserved or observed characteristics as well as

peer influence. Distinguishing between these effects is not straightforward due to the

simultaneity in the behavior of interacting individuals. This paper provides a novel

approach to the identification of peer influence by focusing on the microfoundations

of interaction, rather than adopting ex-post estimation techniques. We introduce a

simple model of decision making for interacting individuals that enables inference of

underlying unobserved parameters out of observable behavior.

The novelty in our approach lies in the introduction of a new source of variation for

social interaction models. Specifically, we vary the set of available options from which

individuals choose. Without any variation in the choice set, the reflection problem

cannot be solved. However with minimal variation, e.g., observations from two choice

sets rather than one, it becomes possible to identify the social influence. For instance

consider two friends, Dan and Bob, and their choices on daily exercise routines during

a countrywide lockdown due to a pandemic. Under strict government rules they can

choose to either exercise home or go for a walk outside. Let Dan choose to exercise

home 71% of the time and go for a walk for 29%, whereas these frequencies be 78% and

22% for Bob, respectively. Reflection problem emerges exactly at this point, where an

outside observer cannot tell whether these friends are behaving similarly because they

are influencing each other or they indeed have similar preferences (and/or backgrounds)

and hence they would have also behaved the same way without interaction. Without

any further information, an outside observer cannot differentiate between these two

scenarios. In order to overcome the reflection problem and identify peer effects out

etc. (Sacerdote, 2011). High productivity co-workers are found to increase one’s own productivity
(Mas and Moretti, 2009). Involvement in crime (Glaeser et al., 1996), job search (Topa, 2001),
adolescent pregnancy (Case and Katz, 1991), college major choice (De Giorgi et al., 2010) are other
prominent examples in which social interactions are shown to be crucial constituents of individual
behavior.
2See Blume et al. (2011); Bramoullé et al. (2020) for an early and recent reviews of literature, respec-
tively.
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of observable behavior, our methodology suggests to exploit the changes in these in-

dividuals’ behaviors over a new choice set. For instance; when the lockdown is over

and the updated government regulations allow also for exercising in the gym. These

individuals’ behaviors under these two scenarios, i.e., {exercise home, go for a walk}

and {exercise home, go for a walk, go to gym}, are sufficient for our identification

strategy to identify the peer effects as long as the observed choices are consistent with

our model, as we will illustrate after introducing the model briefly.

Our main contribution is to provide an intuitive and tractable decision model which

affords a meaningful, and measurable, definition of “influence” as derived from choice

behavior alone. Our model consists of two essential parameters: An individual pref-

erence parameter and an individual influence parameter. The latter captures inter-

dependence of behavior across individuals and can accommodate different values for

different peers, enabling heterogeneity of peer effects. The individual preference pa-

rameter is more standard. It can be interpreted as the intrinsic utility of the underlying

alternatives; the subjective value of the alternative absent any social effects.3 Social

influence transpires through the observed behavior of the other individual(s), where

subjective value of each alternative is adjusted by a weighted version of the observed

behavior of others regarding that alternative. As a result of this weighted aggregation

process, individual choice behavior reflects the relative utility of each alternative in a

given menu altered by social influence. More precisely, the choice frequency of each

alternative from a menu is equal to the relative utility of this alternative under social

influence, with respect to all other available alternatives.

Our identification strategy exploits the change in choice frequencies when a new

alternative is introduced in order to pin down the peer influence and the underlying

preferences. Going back to the example on exercise behavior, let us observe that once

the government regulations allow for going to the gym, Dan and Bob’s behaviors change

as follows: Dan exercises home 60% of the time, goes for a walk for 26% and goes to the

gym for 14%, whereas these frequencies are 70%, 19%, 11% for Bob, respectively. This

3In social interactions literature, the non-influence parameters that affect individual behavior are
defined via types of variables such as predetermined social factors including gender, age, race, etc. Our
model abstracts away from these effects, classifying them under the individual preference parameter.
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pair of behaviors are consistent with our model (as described in subsection 2.3), hence

we can reveal the underlying preferences and the interaction parameters uniquely, over-

coming the reflection problem. Interestingly, our identification strategy (as described

in subsection 2.2) implies that although Dan and Bob’s choice frequencies are aligned

over exercise options, their idiosyncratic preferences are not aligned. For Bob, indeed

the intrinsic utility of home exercise is the highest and going for a walk is the lowest,

whereas for Dan, the exact opposite holds. However Bob’s behavior has great influence

on Dan. To be precise, conformity with Bob’s behavior is five times more important to

Dan than his own subjective evaluation, whereas for Bob his own evaluation and Dan’s

behavior are equivalently important.4 Thus thanks to our identification strategy, we

can deduce that strong conformity motives have resulted in the observed behavior.

Our model is a stochastic choice model that assumes consistent behavior across all

budget sets. Critically, this menu variability grants us unique identification (or point

identification, as coined in the econometrics literature). Moreover, our identification

strategy does not suffer from a common handicap of identification in revealed prefer-

ence or decision-theoretic models: arguably unrealistic data requirements. Many choice

theoretic models require a rich dataset, typically individual choices from all menus, for

identification purposes.5 As we show in Subsection 2.2, observations from only two

menus are sufficient for unique identification for our baseline model, involving two in-

dividuals. For identification of influence networks involving more than two individuals,

observations from two menus can still be sufficient as long as there are sufficiently many

alternatives in the menus. We elaborate more on this in Section 3.

We establish in subsection 2.3 that our model is falsifiable, by providing its empirical

content in terms of choice. Three behavioral properties are sufficient to characterize the

model. All of these properties are built around a cross-elasticity type parameter that

evaluates the relative rate of change in the individual choice frequency of an alternative

4Subsection 2.1 introduces our model formally, but as described above two critical parameters consti-
tute the primitives. In this example, the preference parameters, the intrinsic utility weights of exercise
home, go for a walk, go to gym, for Dan and Bob are 0.1, 0.3, 0.6 and 0.8, 0.08, 0.12, respectively, with
corresponding interaction parameters 5 and 1.
5For a recent exception to this common trend as well as a discussion on the topic, see Dardanoni et al.
(2020).
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as a response to a comparative change in the behavior of the other individual(s). In

contrast to standard models of individual choice, this influence parameter is derived

from the choice behaviors of all of the individuals jointly as opposed to the behavior

of only one individual. Hence, these characterizing properties are entirely novel.

The parameters of our model define an “equilibrium,” where the choice behavior of

each individual is a function of idiosyncratic utility and influence parameters; as well

as the behavior of the other individual(s). Unlike many other discrete choice models

(Brock and Durlauf, 2001; Blume et al., 2011), the equilibrium defined by our model

is unique. Moreover, it is also stable, in the sense that a dynamic adjustment proce-

dure always tends to this unique equilibrium. In other words, if we believe that each

individual aggregates behaviorally according to our procedure, we should expect their

behavior to conform to our model in the long-run. There are two critical implications

of this result. The first implication is more practical: if one individual mistakenly

chooses, or one of them misobserves the other’s choices at some period in time, their

behavior will still revert to the predictions of our model in the long run. Second and

more importantly, identification of the underlying parameters from dynamic data is

also possible. Then in the absence of equilibrium choice behavior, we can use a similar

identification strategy over consecutive choice data. Subsection 2.4 elaborates on this.

Our baseline model involves two individuals with conformity motives, as in the ex-

ample above. An action’s choice probability increases as the action is chosen more

frequently by one’s peer. However our model easily adapts to more individuals and

accommodates other types of interaction. We present two simple extensions. The first

incorporates multi-individual interaction, where individuals have different degrees of

influence on the behaviors of their peers, and second “negative” influence, where the

choice probability decreases as it is chosen more frequently by some peers.

We provide three distinct and well-known social influence settings where the behav-

ior produced by our model can be reproduced under certain assumptions. We refer to

these as ‘foundational justifications’ for our model since each of them can be seen as

an economic mechanism underlying our model of influence. The first of those incor-

porates strategic interactions, introducing a simultaneous game setting whose Quantal



6

Response Equilibrium happens to coincide with our model, whereas the second one

is utility maximization in a discrete choice setting with peer effects. The last mech-

anism is a basic naive learning set up as in DeGroot (1974). All of these models are

distinguished from our model as we use menu variability in our setting.

The organization of the paper is as follows. The next subsection is devoted to lit-

erature review. Section 2 presents a detailed analysis of the baseline model with two

individuals with conformity motives, including identification, falsifiability and stability

results, as well as the foundational justifications. Section 3 introduces the generaliza-

tion to multi-individual settings, whereas Section 4 incorporates negative influence to

these settings. Finally, we conclude. All proofs are left to an appendix.

1.1. Related Literature. Economics research on identification of social interactions

has mainly utilized econometrics tools and techniques. Most of these studies employ

linear social interaction models (Manski, 1993; Blume et al., 2011; Jackson, 2011; Blume

et al., 2015), where individual utility of an action is defined as a linear additive function

with two components: an individual private utility and a social utility. Blume et al.

(2015) provide micro-foundations to these linear interaction models by showing that

under certain parametric assumptions they can be reproduced as the Bayesian-Nash

equilibrium of an incomplete information game where individuals choose an action

to maximize their expected utility given their type and the public types of others.6

Calvo-Armengol et al. (2009) investigate the effect of the structure of social network

and show that an underlying peer effects game rationalizes individual outcomes, where

at the Nash equilibrium each outcome is proportional to the centrality of the individual

within the network.

Linear social interaction models are defined for continuous choice variables. An al-

ternative to this is developed by incorporating the linear additive utility function with

interaction effects into a discrete choice setting (Blume, 1993; Brock and Durlauf, 2001,

2006). Binary or multinomial discrete choice models with social interactions make use

of random fields models to study the equilibrium. Three critical assumptions ensure

tractability of the model. First, the assumption of constant strategic complementarity:

6For identification strategies without parametric assumptions, see Brock and Durlauf (2007).
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the cross-partial of social utility is a positive constant that is the same for all indi-

viduals. Second, rational expectations: the expected average behavior is simply the

objective average behavior. Finally, the error terms follow a relevant extreme value

distribution. These assumptions are sufficient to produce individual choice outcomes

that are consistent with logistic choice with multiple equilibria. The majority of these

papers assume large populations in order to justify the assumption that each individual

ignores the effect of their own choice on the average choice of the society. An exception

to this is Soetevent and Kooreman (2007), where they consider interaction in small

groups in which choices of other individuals is fully observable. Thus, the choice of an

individual directly depends on the observed behavior of the others. Our model also

uses this intuition. Indeed, under certain assumptions the behavior produced by a

multinomial discrete choice model with social interactions coincides with the behavior

produced by our baseline model. This requires a different error distribution then the

one commonly assumed for those works. We clarify this connection in subsection 2.5.

In this strand of literature social interactions has typically been taken to be generated

by group specific averages. Incorporating network theory in the study of identification

of social interactions has enabled a much richer analysis of the microstructure of inter-

actions. Early works on this assumed a known network structure, based on common

observables or self-reported, elicited data (Bramoullé et al., 2009; Lee et al., 2010;

De Giorgi et al., 2010). However both of these methods bear shortcomings for econo-

metric methods or practical reasons related to collecting data (De Paula, 2017). A first

improvement on this was suggested by Blume et al. (2015) by assuming only partial in-

formation on the structure of the underlying network. De Paula et al. (2019) advances

on this by assuming no a priori information on the network structure and provides

sufficient conditions for full identification of social interactions with panel data. Our

paper is complementary to this literature since our general model also encompasses

an influence network, where the structure of the relations do not need to be known a

priori. Instead it is fully revealed by the behaviors thanks to our identification strategy.

It is important to note that many theoretical models for identification of peer in-

fluence are restricted by strategic complementarity (Blume, 1993; Brock and Durlauf,
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2001, 2006; Blume et al., 2011):7 individual utility over an action increases with the

number of peers taking the action, explaining mostly conformity-type behavior. How-

ever empirical evidence points out to negative interactions as well. For instance, Glaeser

et al. (1996) suggests the existence of negative interactions among criminals due to

competition for resources. Bhatia and Wang (2011) study peer effects in physician’s

prescription behavior and find a significantly negative effect on each other’s prescrip-

tion behavior, partly explained by observational learning and congestion effects. Foster

and Rosenzweig (1995) find evidence of negative relation between experimental tech-

nology adoption rates of farmers and their neighbors. As we show in an extension, our

model is flexible enough to accommodate negative interactions.

The use of choice theoretic tools to study social interactions is quite recent. As far

as we know the first choice-theoretic work investigating influence across individuals

is Cuhadaroglu (2017). This work introduces a deterministic model of two stage op-

timization where the first stage involves maximization of own preferences (transitive

but not necessarily complete), and the second stage accommodates social influence to

further refine first stage outcomes. Recently, two contemporaneous studies incorporate

choice theoretic analysis to identification of peer effects. Borah and Kops (2019) and

Kashaev and Lazzati (2019) both propose decision procedures in group settings that

makes use of ‘a consideration set’ approach. Borah and Kops (2019) proposes a two

stage mechanism, where the first stage is devoted to the formation of consideration sets

with those alternatives that are chosen sufficiently enough by the members of peers and

the second stage is devoted to preference maximization. Kashaev and Lazzati (2019)

incorporate random consideration sets to the dynamic model of social interactions of

Blume (1993). The main difference of our work from these models is about the channel

through which others’ behavior influence the individual. Our model presumes that

social influence alters one’s behavior via preferences, whereas those two papers assume

a limitation of the choice set due to social influence.8

7Exemptions to this include structural models to identification such as Bramoullé et al. (2009); Cohen-
Cole et al. (2018). Bramoullé (2007) studies the effect of the structure of the network on equilibrium
behavior for games of anti-coordination, where there are incentives to anti-coordinate.
8Many findings from social psychology or experimental economics literatures support the notion that
social influence alters one’s preferences. For instance, Kremer and Levy (2008) show that alcohol
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Fershtman and Segal (2018) also consider a social interaction set up where individual

behavior not only depends on one’s own preferences but also on the behavior of other

agents in an expected utility framework. A social influence function converts the private

utility of the agent and the observable utilities of everyone else to an observable utility

for the agent. They study certain properties of social influence functions and their

implications for the equilibrium without proposing an explicit behavioral model.

Finally, our work is related to the literature discussing the revealed preference impli-

cations of solution concepts in games; for example, Sprumont (2000); Lee (2012). One

interpretation of the mathematics of our model is formalizing, for each choice set, a

game and a solution concept. Thus, our model provides observable predictions of our

concept as strategy sets vary. The aforementioned papers also study the predictions

of game theory as strategy sets vary. In a similar fashion, our work is also linked to

the literature on estimation and inference in discrete games; with the main difference

being that rather than relying on parametric or structural estimation techniques, our

main tool of inference is revealed preference. For early works on estimation in discrete

games see Bresnahan and Reiss (1991); Kooreman (1994); for inference in large discrete

games see Menzel (2016); for non-parametric estimation in non-cooperative games see

Haile and Tamer (2003).

2. Behavioral Influence

2.1. The Model. Let X be a finite set of alternatives with |X| > 2. A stochastic

choice rule is a map p : 2X \ {∅} → ∪S⊆X∆++(S) such that for all S ⊆ X , p(S) ∈

∆++(S).
9

We propose a simple model of influence. There are two individuals, 1 and 2. Each

individual is influenced by the choices of the other individual. The observable behavior

consumption by one roommate is more likely to influence the alcohol consumption of another room-
mate via a preference change rather than a modification of the choice set. According to the notion of
(mis)identification in social psychology, when some alternatives become identified with certain iden-
tities, they become more likely to be preferred by aspiring individuals, whereas despising individuals
avoid them in order not to be misindentified (Berger, 2016).
9The notation ∆++ refers to the set of probability distributions with full support. We denote

∑

x∈S

f(x)

by f(S) for any function f on X .
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is a pair of stochastic choice rules (p1, p2) where pi stands for individual i’s choices. We

use the notation i, j ∈ {1, 2} with i 6= j for the individuals in general. Then pi(x, S)

stands for the probability of individual i choosing alternative x from S, certainly with
∑

x∈S

pi(x, S) = 1.

The primitives of our setting are idiosyncratic weights and influence parameters. Let

wi ∈ ∆++(X), so that wi(x) measures the idiosyncratic weight of the available alterna-

tives for individual i. These can be interpreted as intrinsic utilities of the alternatives

absent any social influence effects as in the Luce model.10 We postulate that the choice

behavior of individual j regarding an alternative x ∈ S directly influences individual

i’s evaluation of that alternative for the same choice set. Specifically we assume the

utility of agent i from choosing alternative x from budget S is given by:

(1) wi(x) + αipj(x, S)

where αi measures the degree of influence of j on i. For the baseline model, we assume

that αi ≥ 0, hence αi acts as a conformity parameter. The higher the probability that

j chooses x from S, the higher is i’s evaluation of x in S. The value of x is influenced

by the choice probability of others in a linear fashion. Hence, our formulation is in

line with the classical linear interaction models such as Manski (1993); Blume et al.

(2011, 2015). The choice probabilities are given by the normalized utility values as in

the Luce model. Formally,

Definition. (p1, p2) has a dual interaction representation if there exist w1, w2 ∈ ∆++

and α1, α2 ∈ ℜ+ such that

(2) pi(x, S) =
wi(x) + αipj(x, S)
∑

y∈S

[wi(y) + αipj(y, S)]

for all x ∈ S, S ∈ 2X \ ∅ and i, j ∈ {1, 2} with j 6= i.

10A stochastic choice rule p has a Luce representation (Luce, 1959), if there exists a weight distribution

w ∈ ∆++(X) such that p(x, S) =
w(x)
∑

y∈S

w(y)
for all x ∈ S, S ∈ 2X \ ∅ . This ratio of relative weights is

known as the “Luce ratio.”
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When (p1, p2) has a dual interaction representation with parameters (w1, w2, α1, α2),

we say that (w1, w2, α1, α2) represent (p1, p2).

Dual interaction model defines an equilibrium, where the stochastic choice behavior

of the agents ends up being contingent on each other in a particular way.11 Different

cognitive and/or interactive mechanisms may lead to the equilibrium granted by this

model. For now, we abstract away from these underlying processes, and instead focus

on identification and characterization.12

In our model, each pi is only defined implicitly by the procedure in equation (2).

p2 needs to be known in order to determine p1 and vice versa. However, given

(w1, w2, α1, α2), we can obtain an explicit representation by solving the system of si-

multaneous equations, arriving at:

(3) pi(x, S) ≡ λi(S)
wi(x)
∑

x∈S

wi(x)
+ (1− λi(S))

wj(x)
∑

x∈S

wj(x)

for λi(S) ∈ (0, 1) defined as,

λi(S) =
wi(S)[wj(S) + αj]

wi(S)wj(S) + αiwj(S) + αjwi(S)

where wi(S) stands for
∑

x∈S

wi(x). Equation 3 helps to explain why we think of αi as

a measure of influence. The stochastic choice of i from choice set S is, geometrically,

a convex combination of i’s Luce choices and j’s Luce choices. As αi increases, this

combination tends to be closer to j’s Luce choices. In other words, the more the peer

influence is, the higher is the weight attached to the peer’s Luce ratio. In the extreme

case, when αi = 0, λi(S) is equal to 1, independent of the budget set, and the model

11It is also possible to think of individuals as if adjusting their behavior according to their beliefs

about the behavior of their peer, rather than the behavior itself. Under an assumption of rational
expectations, as it is common in social interactions literature (Blume et al., 2011), the beliefs happen
to coincide with actual behavior. This interpretation is entirely in line with our model. However,
since our main goal is to focus on the identification of underlying unobservable parameters out of the
observable behavior, we choose not to include this additional dimension.
12Subsection 2.5 introduces several prominent examples to these underlying mechanisms.
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boils down to standard Luce model.13 In general, each pi can be expressed as a linear

combination of the Luce ratios, where, crucially, the weights in the combination depend

on S. Observe this is “as if” each individual knows exactly not only her own intrinsic

utilities but also those of the other individual, which are not necessarily observable.

Notice that in our original formulation, each individual utilizes each others’ observable

choice behavior rather than their unobservable Luce weights. We believe influence

based on observed behavior rather than an unobserved parameter is behaviorally and

procedurally more plausible.14

Another important implication of this formulation is about uniqueness of the be-

havior produced, which is not obvious from the equilibrium description of the model.

Since (p1, p2) can explicitly be expressed as functions of the preference parameters, for a

given (w1, w2, α1, α2), there is a unique pair (p1, p2) consistent with the dual interaction

model. In other words, our model corresponds to a unique equilibrium.15

2.2. Identification. Assume we observe (p1, p2) that has a dual interaction represen-

tation. How can we identify the underlying preference and interaction parameters? A

powerful feature of our model is that our identification strategy requires observation

of behavior from only two menus: The universal set X and any menu S that has at

least two distinct alternatives, say x and y. To see how, first define for each i = 1, 2,

13It is worth noting that pi consistent with dual interaction model does not satisfy IIA, the charac-

terizing property of Luce model, (
pi(x, S)

pi(y, S)
=

pi(x, T )

pi(y, T )
for all S, T and x, y ∈ S ∩ T ) in general; it

only does so when αi = 0 or αi → ∞. In the former, there is no influence, hence i behaves according
to wi, whereas in the latter, i fully mimics j. For an example to the violation of IIA by the dual

interaction model, see the example given in the introduction:
pDan(home, {home,walk})

pDan(walk, {home,walk})
=

0.71

0.29
6=

0.60

0.26
=

pDan(home, {home,walk, gym})

pDan(walk, {home,walk, gym})
.

14See Section 5 for further discussion on an alternative model that refers to a convex combination of
Luce choices with set independent weights.
15Let us also note that although we restrict our attention to strictly positive stochastic choice rules
(hence considered wi(·) ∈ (0, 1)), it is possible to extend the model to allow wi(·) ∈ [0, 1]. In this case
two additional properties dealing with 0 probabilities are required for characterization of the model.
Although this is a rather straightforward extension, the proof becomes tedious, hence we choose the
restricted setting. The proof is available upon request.
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for any pair (x, S) with x ∈ S, di : (x, S) 7→ ℜ, by

di(x, S) := pi(x, S)− pi(x,X).

The quantity di(x, S) is simply the change in the probability of i’s choosing x as

the set X shrinks to S. With αi ≥ 0, this change is always nonnegative, with the

interpretation that in a larger set, there are more alternatives from which to choose.16

In the dual interaction model, this change instead is governed by two separate effects.

First, there is the individual effect. A larger set includes more alternatives, rendering

any given alternative relatively less attractive. In addition, there is also a social influ-

ence effect imposed by the change of the other individual’s choice probability, dj(x, S).

With αi > 0, as the set enlarges, this indirect effect contributes to the loss in choice

probability of any given alternative. Let us decompose di(x, S) into these two effects

explicitly for the model:

di(x, S) =pi(x, S)− pi(x,X)

=
1− wi(S)

1 + αi

pi(x, S) +
wi(S) + αi

1 + αi

pi(x, S)−
1 + αi

1 + αi

pi(x,X)

=
1− wi(S)

1 + αi

pi(x, S) +
wi(x) + αipj(x, S)

1 + αi

−
wi(x) + αipj(x,X)

1 + αi

=
1− wi(S)

1 + αi

pi(x, S)
︸ ︷︷ ︸

individual

+
αi

1 + αi

dj(x, S)
︸ ︷︷ ︸

social influence

The third line follows from the description of the model. Notice what is captured by

the individual counterpart. In Luce’s model, this loss is equal to d(x, S) = p̂(x, S) −

p̂(x,X) =
w(x)

w(S)
− w(x) = (1 − w(S))p̂(x, S), where p̂(x, S) is the corresponding Luce

probability. In our decomposition the individual counterpart captures a similar effect,

but weighted by 1/(1 + αi).

We make use of this decomposition to infer αi. One way of achieving this is to make

use of a normalization and the decomposition of di(y, S) to cancel out the individual

counterparts. To this end, take an alternative y ∈ S \ {x} and normalize both of

16Indeed this refers to the well-known Regularity property (Block and Marschak, 1960).
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the decompositions by the respective observed probabilities as follows and take the

difference:

di(x, S)

pi(x, S)
=

1−wi(S)
1+αi

pi(x, S)

pi(x, S)
+

αi

1+αi
dj(x, S)

pi(x, S)

di(y, S)

pi(y, S)
=

1−wi(S)
1+αi

pi(y, S)

pi(y, S)
+

αi

1+αi
dj(y, S)

pi(y, S)

di(x, S)

pi(x, S)
−

di(y, S)

pi(y, S)
=

αi

1 + αi

[
dj(x, S)

pi(x, S)
−

dj(y, S)

pi(y, S)

]

(4)

Equation 4 reveals αi uniquely whenever there exists (x, y, S) such that
dj(x, S)

pi(x, S)
−

dj(y, S)

pi(y, S)
6= 0. Within the proof of Theorem 1, we show that there always exist (x, y, S)

such that this condition holds, as long as p1 6= p2. For the inference of wi(x), we

simply make use of the description of the model for choices from X , yielding: wi(x) =

pi(x,X) + αi(pi(x,X) − pj(x,X)). Obviously each wi(x) is identified uniquely with
∑

X

wi(x) = 1. Let us state these results in a proposition for completeness purposes.

Proposition 1. Let p1 6= p2 and (p1, p2) have a dual interaction representation. Then

(w1, w2, α1, α2) that represent (p1, p2) are identified uniquely.

Identification above relies on the availability of data from two sets, the universal set

X and any other menu S with at least two alternatives. This begs the question whether

it is possible to do any inference when choices from X are not available? Indeed it is

possible to recover the parameters from pairs of sets as long as they have at least two

common elements, although the identification strategy gets slightly more complicated.

To see how, let any two distinct sets S, T with x, y ∈ S ∩ T and S ∪ T = X and

reproduce equation (4) for any two such S, T , as di(x, S, T ) = pi(x, S)− pi(x, T ) =

=
wi(T )− wi(S)

wi(T ) + αi

pi(x, S) +
wi(x) + αipj(x, S)

wi(T ) + αi

−
wi(x) + αipj(x, T )

wi(T ) + αi

=
wi(T )− wi(S)

wi(T ) + αi

pi(x, S)

︸ ︷︷ ︸

individual

+
αi

wi(T ) + αi

dj(x, S, T )

︸ ︷︷ ︸

social influence
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Normalizing the decompositions for distinct x, y ∈ S and taking the difference will

result in:

di(x, S, T )

pi(x, S)
−

di(y, S, T )

pi(y, S)
=

αi

wi(T ) + αi
︸ ︷︷ ︸

γi(x,y,S,T )

[
dj(x, S, T )

pi(x, S)
−

dj(y, S, T )

pi(y, S)

]

Thus two identifying equations are:

(5) γi(x, y, S, T ) =
αi

wi(T ) + αi

and γi(x, y, T, S) =
αi

wi(S) + αi

.

Unlike the case with data from X , we now have one too many parameters for unique

identification only from γis. The third identity we need comes from the normalization

assumption wi(X) = 1. Yet as the behavior from X is not observed, we need to

decompose it consistently over S and T . Since wi(S) + wi(T \ S) = 1, by definition of

the model wi(x) = [αi + wi(S)]pi(x, S)− αipj(x, S) yields:

wi(T \ S) = [αi + wi(T )]
∑

x∈T\S

pi(x, T )− αi

∑

x∈T\S

pj(x, T ) = 1− wi(S),

resulting in the last equation sufficient for unique identification combined with the two

above.

We shall note that the requirement S∪T = X is not strictly necessary for identifica-

tion without choice data from X . Since we cannot speculate about underlying param-

eters without observing some data involving all variables, the identification requires

some observations covering X . Specifically, in addition to identification equations (5),

more data revealing wi(S ∪ T ) is required. Whenever S ∪ T = X , the normalization

wi(X) = 1 comes to aid. Whenever S ∪ T 6= X , any additional observation revealing

wi(X \(S∪T )) should be sufficient for full identification. For instance, pi(z, R), pi(t, Q)

for i = 1, 2 will be sufficient if z, t ∈ (R ∩Q) and X \ (S ∪ T ) ⊆ (R ∪Q).

2.3. Falsifiability. For identification we assumed a pair of choice behaviors (p1, p2)

consistent with the dual interaction model. We now need to express explicitly how one

can detect the consistency of the data with the model. In other words for given (p1, p2),
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which properties of these behaviors ensure that these two individuals are behaving as

if they are choosing according to dual interaction model?

We have three falsifiable characterizing properties built around the decomposition

of di(x, S) into individual and social counterparts as we have used in subsection 2.2.

Specifically, for any S 6= X and x ∈ S, di(x, S) is composed of two counterparts: the

individual effect (as there are more options in X than S for i’s attraction) and the

social influence effect (same goes for j’s attraction).

Our characterizing properties build on the premise that one can eliminate the un-

observed individual effects for x ∈ S by cancelling them out with those of di(y, S) for

some distinct y ∈ S. The remainder will then be a function of the social influence

effect. Specifically, it will be a linear function. Formally, take any S and x, y ∈ S with
dj(x, S)

pi(x, S)
−

dj(y, S)

pi(y, S)
6= 0 and define βi(x, y, S) as follows:

(6)
di(x, S)

pi(x, S)
−

di(y, S)

pi(y, S)
= βi(x, y, S)

[
dj(x, S)

pi(x, S)
−

dj(y, S)

pi(y, S)

]

Three properties that impose conditions on these two variables β1(x, y, S) and β2(x, y, S)

are sufficient for the characterization of the dual interaction model.

Independence [I ]. βi(x, y, S)(:= βi) is independent of S, x, y. Moreover βi satisfies

(6) for all S 6= X and distinct x, y ∈ S.

Uniform Boundedness [UB ]. βi(x, y, S) < min
z∈X

{
pi(z,X)

pj(z,X)

}

for all S, and distinct

x, y ∈ S.

Non-negativeness [Nn]. βi(x, y, S) ≥ 0 for all S, and distinct x, y ∈ S.

Independence is the property that restores the additive linear influence structure

among individuals. βi(x, y, S) is defined for all those observations with a non-zero
dj(x, S)

pi(x, S)
−

dj(y, S)

pi(y, S)
. The first part of Independence ensures that βi(x, y, S) is in-

deed constant across observations, hence defining βi. The second part of Indepen-

dence guarantees that this βi satifies equation (6) even for those observations with
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dj(x, S)

pi(x, S)
−

dj(y, S)

pi(y, S)
= 0. Uniform Boundedness guarantees that idiosyncratic evalua-

tions of alternatives, wi are positive. This is due to the choice of αi :=
βi

1− βi

and

wi(x) := pi(x,X) + αi(pi(x,X) − pj(x,X)), as revealed in subsection 2.2. These two

equations jointly imply:
pi(x,X)

pj(x,X)
=

wi(x) + αipj(x,X)

(1 + αi)pj(x,X)
=

wi(x)

(1 + αi)pj(x,X)
+

αi

1 + αi

.

Hence, by UB, βi =
αi

1 + αi

< min
z∈X

{ wi(z)

(1 + αi)pj(z,X)
+

αi

1 + αi

}

ensures that wi(z) > 0

for all z. And finally, Non-negativeness restricts the interaction among individuals to

conformity behavior rather than diversification.

The characterization result is stated for pairs of stochastic choice rules with some

variation in the overall behavior, i.e., p1 6= p2. This is because having exactly the

same behavior in any choice set might be due to identical preferences of 1 and 2, i.e,

w1 = w2; or it might be because one of the individuals only cares about imitating

the other individual. It is not possible to distinguish between these cases without any

additional information, such as their choice behavior in isolation.

Theorem 1. Let p1 6= p2. Then (p1, p2) has a dual interaction representation if and

only if it satisfies Independence, Uniform Boundedness, and Non-negativeness.

The proof constructs the model thanks to the structure granted by Independence and

by the help of restrictions imposed by the remaining two axioms. We take αi(x, y, S) :=

αi =
βi

1− βi

(well-defined by the first two properties and non-negative by the latter two)

and wi(x) := pi(x,X) + αi(pi(x,X) − pj(x,X)) (positive by Uniform Boundedness).

We then show that for any S and x, y ∈ S, Independence builds up to

pi(x, S)

pi(y, S)
=

wi(x) + αipj(x, S)

wi(y) + αipj(y, S)
.

The fact that this holds for each pair of alternatives immediately gives us the dual

interaction model.

Theorem 1 is a strong result. Three properties over βi(·) are necessary and sufficient

to confirm if two individuals are choosing consistently with the dual interaction model.

This becomes a straightforward falsification exercise for an observable pair of choice

behaviors, (p1, p2), as βi(·) is merely derived from data. Independence is a property very
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much in the spirit of ‘constant ratio’ properties such as Luce’s IIA. IIA requires that

the ratio of choice frequencies of any two alternatives is constant across sets. Similarly,

Independence requires that the ratio given by βi(·) for any two alternatives is constant

across sets. Certainly what is captured by βi is not as straightforward to see as Luce’s

ratio, however we argue that there is subtle behavioral content to βi. Observe that,
di(x, S)

pi(x, S)
is the percentage decrease in agent i’s choice probability of x in expanding S

to X . So,
di(x, S)

pi(x, S)
−
di(y, S)

pi(y, S)
is a differential in percentage changes. On the other hand,

dj(x, S)

pi(x, S)
−

dj(y, S)

pi(y, S)
reflects a differential in percentage changes for agent j, normalized

by the choice probabilities of i. Thus, the ratio of these two differentials in percentage

changes, i.e., βi(x, y, S), acts like a differential cross-elasticity of choice probabilities

in expanding the set S to X . Independence fixes this differential cross-elasticity for

different menus, while the other two properties bound it.

2.4. Stability. The dual interaction model involves an adjustment procedure where

an individual’s evaluation of an alternative is adjusted by the other’s behavior as well

as the level of susceptibility to influence. We now embed this adjustment procedure in a

dynamic setting, where individuals start interaction from possibly unrelated behaviors.

Specifically let (pt1, p
t
2) denote the behaviors of 1 and 2 at period t > 0 and assume

that their initial behaviors (p11, p
1
2) are given. One can think of new roommates or

teenagers just enrolled in a new school as examples. Below we show that although these

individuals start interacting from possibly unrelated behaviors, as long as they adjust

consistently, eventually they converge to (p∗1, p
∗
2), the unique pair of behaviors that the

model yields for the given set of parameters. In other words, the behavior produced

by the dual interaction model constitutes a stable equilibrium when embedded in a

dynamic environment.

Theorem 2. Take wi ∈ ∆++(X), αi ≥ 0, p∗i (S) ∈ ∆++(S) for all S ∈ 2X \ {∅} and

for each i ∈ {1, 2} and let (w1, w2, α1, α2) represent (p∗1, p
∗
2). Further, let (p11, p

1
2) ∈
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∆(S)×∆(S). Define for each i ∈ {1, 2} and t ≥ 2, pti(·, S) ∈ ∆(S) via

pti(x, S) ≡
wi(x) + αip

t−1
j (x, S)

∑

y∈S wi(y) + αip
t−1
j (y, S)

.

Then for each i ∈ {1, 2}, lim
t→∞

pti = p∗i .

An interesting implication of this dynamic environment involves identification. Al-

though the observed behavior changes over time, because it changes in a consistent

way, our identification strategy still holds for the underlying preference and interaction

parameters (w1, w2, α1, α2). Similar to the static setting, the data requirement is min-

imal: only choice behavior from two different sets need be observed. However, since

now observations are from different time periods, inference of αi demands data from

two successive periods. To see how, let us reproduce equation (4) for this dynamic

environement. Take any S 6= X with x, y ∈ S such that
dt−1
j (x, S)

pti(x, S)
−

dt−1
j (y, S)

pti(y, S)
6= 0

and let:

βi(x, y, S) =

dti(x, S)

pti(x, S)
−

dti(y, S)

pti(y, S)

dt−1
j (x, S)

pti(x, S)
−

dt−1
j (y, S)

pti(y, S)

.

Then, dti(x, S) =pti(x, S)− pti(x,X)

=
1− wi(S)

1 + αi

pti(x, S) +
wi(S) + αi

1 + αi

pti(x, S)−
1 + αi

1 + αi

pti(x,X)

=
1− wi(S)

1 + αi

pti(x, S) +
wi(x) + αip

t−1
j (x, S)

1 + αi

−
wi(x) + αip

t−1
j (x,X)

1 + αi

=
1− wi(S)

1 + αi

pti(x, S)
︸ ︷︷ ︸

individual

+
αi

1 + αi

dt−1
j (x, S)

︸ ︷︷ ︸

social influence

Then, the difference between normalized decompositions for distinct x, y ∈ S yields:

dti(x, S)

pti(x, S)
−

dti(y, S)

pti(y, S)
=

αi

1 + αi

[

dt−1
j (x, S)

pti(x, S)
−

dt−1
j (y, S)

pti(y, S)

]
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Hence, we have

βi(x, y, S) =
αi

1 + αi

as before. Identification of wi(x) is achieved via:

wi(x) = (1 + αi)p
t
i(x,X)− αip

t−1
j (x,X).

We conclude the analysis of our baseline model by stating this identification result.

Proposition 2. Let (pt−1
1 , pt−1

2 , pt1, p
t
2) such that for each i ∈ {1, 2} and pti(·, S) ∈ ∆(S)

pti(x, S) ≡
wi(x) + αip

t−1
j (x, S)

∑

y∈S wi(y) + αip
t−1
j (y, S)

.

Then (w1, w2, α1, α2) that represent (p1, p2) are identified uniquely.

2.5. Foundations. Why does the dual interaction model make sense as a decision

procedure that incorporates social influence? We provide three different foundational

justifications, three different mechanisms that produce behavior consistent with the

dual interaction model. Each environment differs from the classical stochastic choice

setting. To this end, we strip the menu-richness of the choice argument away and focus

on a single budget set, say X . We suppress the menu dependence in the notation of

this subsection. All of the following can be reproduced for any menu S.

The first mechanism we introduce reproduces dual interaction as the equilibrium

of a game, whereas the second one incorporates individual utility maximization in a

discrete choice setting with peer effects. The main link between these two and our

model is built around the use of a logistic distribution. However as we show in the

third mechanism, the logistic set-up is dispensable. This last part introduces a simple

naive learning mechanism that also reproduces dual interaction behavior in the limit.

2.5.1. Game theoretic foundations: Dual interaction model envisions individual behav-

ior contingent on peer behavior, which naturally relates to a game set-up. Thus the

first question we investigate is whether the pair of behaviors produced by the dual

interaction model could also be rationalized by an underlying game. Indeed we show
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that, a very specific solution concept for normal form games, Quantal Response Equi-

librium (McKelvey and Palfrey, 1995), also reproduces the behavior granted by our

model. To see this, consider a normal form game with two players 1 and 2, with

S = S1 × S2 = X ×X as the set of strategy profiles and si represents a pure strategy

for player i. Let Σi denote the set of probability distributions over Si and an element

σi ∈ Σi is a mixed strategy, and σi(si) is the probability that player i chooses pure strat-

egy si with Σ as the set of mixed strategy profiles. The pay-off functions ui : S → ℜ

are such that ui(x, y) represents the utility of player i when player 1 consumes x and

player 2 consumes y. In particular, assume that u1(s) = u1(x, y) = w1(x)+α11{x = y}

and u2(s) = u2(x, y) = w2(y)+α21{y = x}. In other words each player receives a con-

sumption utility wi(x) and additional utility αi when their consumptions match. With

positive α, this corresponds to a very simple form of pay-off function for conformity

games. For instance, consider classroom behavior of students: Asking a question ‘feels

easier’ when someone else does so (Alessio and Kilgour, 2011) or negative behavior such

as aggression becomes more rewarding in presence of aggressive peers (Hanish et al.,

2005).

Hence, for each mixed-strategy profile σ ∈ Σ, player i’s expected payoff is ui(σ) =
∑

s∈S

σi(si)σj(sj)ui(s) and the expected payoff for adopting the pure strategy si when

the other player uses σj is ui(si, σj) =
∑

sj∈Sj

σj(sj)ui(si, sj) = σj(si)(wi(si) + αi) + (1−

σj(si))wi(si) = wi(si) + αiσj(si). Under the assumption that Ui(si, σj) = ui(si, σj)εis

with i.i.d. Log-logistic errors (i.e., log εi follows a Type 1 extreme value distribution),

the QRE outcome coincides with (p1, p2) of the dual interaction model. The stochastic

derivation is provided in the Appendix.

Two caveats must be mentioned: first, QRE is a prediction for a single game, whereas

the testable implications of our model derive their power from the ability to observe

behavior across choice sets. Indeed, QRE affords basically no predictions on a single-

game (much like classical choice theory generates no predictions from a single budget).

See for example, Haile et al. (2008). Thus, a suitable extension of the notion of QRE
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across game forms must be described.17 Second, our model results from a very specific

choice of error distribution (one of the parameters of the QREmodel) and a very specific

choice of utility (the other main parameter). To sum up, the behavior produced by our

model may be viewed as being rationalized by a particular choice of game forms and the

logit QRE solution concept, suitably extended to across games. We believe exploration

of similar results for generic games of peer influence with standard equilibrium concepts

remains as an interesting open question outside the scope of this paper.18

2.5.2. Random utility with linear social interactions: The standard econometric tools

to study social interactions include discrete choice models with peer effects (Blume,

1993; Brock and Durlauf, 2001, 2006). These models regard individual utility as a linear

additive function of observed and unobserved individual characteristics as well as so-

cial influence. Under the assumption of i.i.d extreme value unobserved characteristics,

utility maximization yields choice frequencies as a function of individual characteristics

and social influence. The dual interaction model can also be reproduced in a multino-

mial discrete choice setting. Two specific assumptions are sufficient to achieve this: a

logarithmic transformation of the utility and a relevant extreme value distribution. To

see how this works, assume a multiplicative form for individual utility as follows:

Ui(x) = Vi(x)εi(x) where Vi(x) = wi(x) + αipj(x)

Similar to the previous subsection (and as by step by step derivation provided in the

Appendix), under the assumption that εi follows a log-logistic distribution, maximiza-

tion of logUi(x) results in pi(x), exactly as given by the dual interaction model. Thus,

a logarithmic transformation of the individual utility and a relevant extreme value dis-

tribution for the error terms in a discrete choice setting with social interactions lead

to the behavior described by the dual interaction model.

17In particular one must take care to ensure the error distributions across game forms coincide in a
natural way.
18The extensive literature on peer influence games over social networks (Ballester et al., 2006; Calvo-
Armengol et al., 2009) does not provide an immediate answer to this question, mostly because the
multivariate discrete nature of our setting and the assumption that main observables are stochastic
choice outcomes over different menus.
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According to Blume et al. (2011) empirical challenges to identification of social inter-

actions are broadly grouped under three categories: (i) simultaneous equations prob-

lem: how to differentiate the direct interdependencies between choices from the effects

of predetermined social factors; (ii) unobserved group-level characteristics; (iii) endo-

geneity of reference groups and self-selection. The primary aim of our social interaction

model for identification purposes is the revelation of the direct interdependencies be-

tween choices. Those are captured by the interaction parameter, αi. Since our model

lives in a two-parameter world, all other effects are left to be captured by the preference

parameter wi. This approach enables us to tackle the simultaneous equation problem

of (i), ‘the reflection problem’, by identifying the endogenous effects and abstracting

away from the contextual effects as well as the other unobservables.

In order to address challenges belonging to (ii)19, one strategy could be to introduce

group level unobservables at the random utility stage, and see how this affects the

stochastic derivation. Specifically, let

Ui(x) = Vi(x)ei(x) where Vi(x) = wi(x) + αipj(x) and ei(x) = εi(x)µ(x)

where ei follows a log-logistic distribution as before.20 It is immediate to see that the

stochastic derivation would result in dual interaction model with the same parameters.

In other words, group level unobservables in the utility function become idle for the

choice behavior as long as the joint distribution of individual level and group level

disturbances comply with multinomial log-logit derivation.

Another approach to address the challenges belonging to (ii) or (iii) or to investigate

the effects of predetermined social factors would be to further explore heterogeneities

over wi (and/or αi). For instance, take the issue of homophily, the tendency to create

social ties with people who are similar to one’s self (McPherson et al., 2001; Blackwell

19See Brock and Durlauf (2007) for identification of correlated effects in discrete choice social inter-
action models and Bramoullé et al. (2020) for a recent survey of the methods developed to address
it.
20Hence log εi(x)+log µ(x) follows a standard Gumbel distribution. That such a decomopsition exists
follows from the work of Shanbhag and Sreehari (1977) (see e.g. equation (2) there). Bosch and Simon
(2013) offers another application. Admittedly, the choice of this joint distribution is ad hoc, however
any other convolution would potentially result in choice probabilities that are entirely different to our
model.
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and Lichter, 2004; Currarini et al., 2009). This is an endogenous reference group for-

mation problem and is not immediate to identify out of observable behavior. However

our model reduces homophily to the similarity of underlying wi parameters for people

with high αi values. In other words, our identification strategy can be helpful to iden-

tify homophilic interactions by comparing the revealed wi’s. Certainly this becomes a

more interesting question in a multi individual setting, as we explore in Section 3.

One final potential challenge that may arise in our setting but not listed explicitly

within the above categories is due to the exogenous menu variation across individu-

als. We assume that individuals choose from the same menus of alternatives, and our

entire identification strategy is based on menu variation. However in cases the menus

available to individuals are correlated with the idiosyncratic unobservables, this criti-

cal assumption fails. Hence the dual interaction representation will not be useful for

identification with endogenous menu variation.

2.5.3. Naive learning with anchors: The previous two subsections have explored the

rational and/or strategic motivations underlying dual interaction mechanism. However

adopting the behavior dictated by the dual interaction model does not necessitate

adopting standard notions of full rationality. Indeed, as we now show, dual interaction

model can also be reproduced in a particular boundedly rational learning setting. The

most well-known model of naive learning over social networks, the DeGroot model,

envisions a non-Bayesian updating of individual beliefs by repeatedly taking weighted

averages of one’s neighbors’ beliefs (DeGroot, 1974; Golub and Jackson, 2010).

In a DeGroot setting, each agent n ∈ N has a belief pi(t) ∈ [0, 1] at time t ∈

{0, 1, 2, ...}. These beliefs might be thought as the probability that a statement is true,

the likelihood of choosing an action or a measure of the quality of a given product, etc.

Given the stochastic interaction matrix Tn×n, where Tij captures the influence of agent

j on i, the updating rule is simply p(t) = Tp(t − 1) = T tp(0), where p(·) stands for

the vector of beliefs of all agents. Simply put, at each point in time, the individuals

update their beliefs by taking a weighted average of their peers’ and their own previous

beliefs, with time invariant weights.
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DeGroot model is essentially a belief updating model, where dual interaction model

can be seen as a behavior adjustment model. In the following, we stick to our termi-

nology and interpret pi as stochastic behavior, rather then beliefs. However, as noted

in footnote 11, the mathematics of our model is entirely consistent with a belief-based

interpretation. Now, to see the relationship to our model let N = 2 -although the

extension to the n individual case is immediate. Let,

p(0) =
(

w1(x) w2(x) p01(x) p02(x)
)′

for some alternative x ∈ X , where p0i ∈ [0, 1] is any initial behavior, which might or

might not be the same with the anchor, wi.
21 In this setting, the anchors w1 and w2

can be seen as innate preferences/beliefs that do not change over time. Note that we

only focus on one alternative, x, to keep things simple. The same can be done for all

alternatives in the menu. Consider the following transition matrix T :











1 0 0 0

0 1 0 0
1

1 + α1
0 0

α1

1 + α1

0
1

1 + α2

α2

1 + α2
0











.

The first two rows indicate the time-independency of the anchors, whereas the last

two rows correspond to the updating weights of the agents; for instance, individual

1 is influenced by individual 2 with a weight of
α1

1 + α1
, whereas her own anchor has

a weight of
1

1 + α1
and so on. As before, the interaction paramater αi captures the

relative importance of social interaction effects. With this transition matrix, period 1

behavior will be

p(1) = Tp(0) = p(1) =

(

w1(x) w2(x)
w1(x) + α1p

0
2(x)

1 + α1

w2(x) + α2p
0
1(x)

1 + α2

)

.

21Friedkin and Johnsen (1990) suggest a generalization of the DeGroot model where updating at each
period also involves agents’ initial beliefs. They also show convergence to a non-consensus state. The
slight difference with the dynamic version of our model, as we examine in subsection 2.4 is that, for
their model the initial behavior is equal to the initial belief. Instead we show convergence to the
behavior dictated by our model for any p0.
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As we also prove in subsection 2.4, in the limit p(t) = T tp(0) indeed converges to a
(

w1(x) w2(x) p∗1(x) p∗2(x)
)

with (p∗1(x), p
∗
2(x)) as defined by the dual interaction

model. In a nutshell, dual interaction model can also be reproduced as the limit of a

DeGroot updating process with anchors.

Overall, these three settings indicate that behavior postulated by our model can be

justified by an underlying utility maximization as well as a naive learning mechanism.

The main difference of our model lies in the menu variability of our setting. Our model

is a stochastic choice model that assumes consistent behavior across menus. Criti-

cally this menu variability grants us unique identification of the underlying unobserved

parameters.

3. Multi-agent Interaction

One of the strengths of our model is that it is easily generalizable to multi individ-

ual settings with more intricate forms of social interactions. We can easily capture

the heterogeneities that drive different behavioral outcomes in a social context. Not

only individuals have different preferences but they also have different levels of sus-

ceptibility to influence. Or similarly, different people might influence an individual

in different ways. The generalization of our model to multi individual settings allow

for these variations, by providing a complementary approach to the identification of

social interactions over social networks. In particular, it allows the identification of a

weighted social network from choice behavior.

Early works on social networks have assumed known network structure, based on

common observables or self-reported, elicited data (Bramoullé et al., 2009; Lee et al.,

2010; De Giorgi et al., 2010), that is rather costly to collect (De Paula, 2017). A

first improvement on this was suggested by Blume et al. (2015) by assuming only

partial information on the structure of the underlying network. De Paula et al. (2019)

advances on this by assuming no a priori information on the network structure and

provides sufficient conditions for full identification of social interactions with panel

data. Similarly, our generalized model do not require any exogenous network structure.

On the contrary, our representation theorem reveals the unknown network of social
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influence in addition to individual preferences and influence patterns. Specifically,

given the behavior of a group of individuals that is consistent with our characterizing

properties, we can uniquely identify the underlying preferences, represented by wi, and

the interaction patterns, represented by αij , capturing how individual i is influenced

by the behavior of individual j for all pairs of individuals i and j. Note that the

interaction between i and j might be asymmetric, i.e., αij need not be equal to αji.

Let us now formally introduce the multi individual model. Let N denote a set of

n < +∞ individuals interacting. As before, for each choice problem, S ∈ 2X \ ∅, we

observe agent i’s stochastic choice, pi(x, S). Let p−i(x, S) ∈ ℜn−1 denote the vector of

pj(x, S) and d−i(x, S) ∈ ℜn−1 the vector of dj(x, S) for all j 6= i.

Definition. (p1, p2, ..., pn) has a social interaction representation if for each i ∈ N

there exist wi ∈ ∆++(X) and αi ∈ ℜn−1
+ such that

pi(x, S) =
wi(x) +αi · p−i(x, S)

∑

y∈S[wi(y) +αi · p−i(y, S)]

for all x ∈ S and for all S.

The parameter αi captures different levels of susceptibility to influence from different

individuals, i.e., agent i can be influenced differently by different j’s. Let αij denote

the entry of αi relating to the influence of individual j on i. If αij = 0 for all j 6= i,

once again i’s choice behavior reduces down to Luce.

The identification strategy and the characterizing properties are similar to those of

the baseline model. Notice that for any S 6= X , and any two distinct x, y ∈ S, now

there might be multiple vectors γi ∈ ℜn−1 satisfying the following equation:

(7) γi ·

(
d−i(x, S)

pi(x, S)
−

d−i(y, S)

pi(y, S)

)

=
di(x, S)

pi(x, S)
−

di(y, S)

pi(y, S)
.

We will be interested in the ones that satisfy it for all observations.

Bi = {γi ∈ ℜn−1 |γi solves (7) for any S and distinct x, y ∈ S}
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The first characterizing property ensures that Bi is nonempty, hence there is at least

one solution to the system of equations given by (7) for all S and x, y ∈ S. The last

one puts bounds on it.

N-Independence [N-I ]. Bi is nonempty.

N-Positive Uniform Boundedness. [N-PUB ] For all z ∈ X, pi(z,X) >

γi · p−i(z,X) for some γi ∈ Bi with γi ∈ ℜn−1
+ .

N-Independence implies that there exists a vector, say βi, that satisfies (7) indepen-

dent of S, x, y. As before, αi is to be identified from βi. Specifically, αij =
βij

1−
∑

j 6=i

βij

.

However, unique identification requires more than two observations this time, simply

because there are more unknowns now. Indeed, equation (7) has (n − 1) unknowns,

αij for each j 6= i. Hence, the number of linearly independent equations required to

solve the system is (n − 1). Notice that this does not mean we necessarily need data

from (n − 1) different menus. All that is required is (n − 1) observations; data from

two different menus is sufficient as long as there are at least (n− 1) common pairs of

alternatives in these two menus.22

Unique identification of the underlying preferences is then achieved via

(8) wi(x) = pi(x,X) +
∑

j 6=i

αij [pi(x,X)− pj(x,X)].

Theorem 3. Let {pi}i∈N . Then, {pi}i∈N has a social interaction representation if

and only if N-Independence and N-Positive Uniform Boundedness hold.

22Notice that with n individuals, there are n(n−1) unknown interaction parameters. Full identification
of these n(n−1) unknowns for our model requires (n−1) independent identification equations given by
equation 7, which corresponds to observations of (n− 1) pairs of alternatives from at least 2 different
menus. For instance with 4 individuals, to point identify 12 interaction parameters, observations
from pi({x, y, z}) and pi(X) with |X | ≥ 4 is sufficient (conditional on linear independence). When
number of alternatives in X is not high enough to consider different pairs, it is possible to use
the same pairs of alternatives from a larger number of menus. With 10 individuals, to identify 90
interaction parameters, observations from pi({x, y, z, t, u} and pi(X) with |X | ≥ 6 is sufficient as well
as pi({x, y, z}), pi({x, y, t}), pi({x, z, t}) and pi(X) with |X | ≥ 4.
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As before, the equilibrium defined by the model always exists and is unique. More-

over, when embedded in a dynamic adjustment process, as in subsection 2.4, the limit

behavior happens to be the equilibrium defined by our model. The following theorem

formalizes these.

Theorem 4. Take wi ∈ ∆++(X), αij ≥ 0 for all i, j ∈ {1, 2, ..., n} with i 6= j. Then,

there is a unique (p∗1, . . . , p
∗
N) ∈ ∆++(S)

N for which

p∗i (x, S) =
wi(x) +αi · p

∗
−i(x, S)

∑

y∈S[wi(y) +αi · p∗
−i(y, S)]

and for any (p11(·, S), . . . , p
1
N(·, S)) ∈ ∆++(S)

N , the iterative map

pti(x, S) =
wi(x) +αi · p

t−1
−i (x, S)

∑

y∈S[wi(y) +αi · p
t−1
−i (y, S)]

converges to (p∗1, . . . , p
∗
N).

4. Negative Interactions

Most of the theoretical tools developed to study social interactions are restricted by

strategic complementarity or conformity type assumptions. This is because they only

focus on positive interactions, where the individual payoff of an action increases the

more it is chosen by one’s peers. However in certain contexts, where individuals espe-

cially do not want to behave similarly, negative interactions are in play. An intuitive

example to this is fashions and fads. A trend setter happens to be the one that initially

behaves differently than everyone else. The choice of a fashion product not only signals

which social group you would like to identify with but also signals who you would like to

differentiate from (Pesendorfer, 1995). Among criminals competition for resources gov-

erns the need for negative interactions (Glaeser et al., 1996). Bhatia and Wang (2011)

study peer effects in physicians’ prescription behavior and find significantly negative

peer influence, partly explained by observational learning and congestion effects. Fos-

ter and Rosenzweig (1995) find evidence of negative relation between experimental

technology adoption rates of farmers and their neighbors. Other examples to settings

with negative interactions include market entry games (Rapoport et al., 2000; Duffy
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and Hopkins, 2005) as well as anti-coordination games (Bramoullé, 2007; Bramoullé

et al., 2004) and games that bring both coordination and anti-coordination motives

together such as fashion games (Cao et al., 2013).23

The versatility of the dual interaction model allows us to extend it to capture negative

interactions in a rather straightforward way. However we shall first point out that this

is not as simple as taking any negative αi. Let us explain: Consider our benchmark

model, with two individuals i and j, and a pair (x, S) with x ∈ S. We refer to a negative

interaction between i and j as the following phenomenon: Whenever j increases their

propensity to choose x from S, i decreases her propensity in response. Formally,

imagine two hypothetical behaviors from individual j, say pj(x, S) and qj(x, S), where

pj(x, S) > qj(x, S). Negative interaction refers to the property that if pi(x, S) =
wi(x) + αipj(x, S)

wi(S) + αi

and qi(x, S) =
wi(x) + αiqj(x, S)

wi(S) + αi

, then pi(x, S) < qi(x, S).

4.1. Reparametrization: First, notice that a negative αi does not necessarily imply

negative interaction. Crucially, for values of αi < 0, whenever wi(S) < |αi|, pi(x, S)

puts a negative weight on wi(x) and a positive weight on pj(x, S), quite contrary to

the essence of negative interactions. Thus, we employ a simple reparametrization of

the model in order to avoid confusion. For the two-agent model, let δi ≡
1

1 + αi

, and

observe that

pi(x, S) =
δiwi(x) + (1− δi)pj(x, S)

δiwi(S) + 1− δi
.

We maintain the premise that wi remains a “weight of choice” absent any influence,

so we hypothesize that δi > 0.24 Observe that the case of αi ≥ 0 corresponds to δi ≤ 1

and for values of δi > 1, pi(x, S) is indeed decreasing in pj(x, S) as required by the

notion of negative interaction. Hence, with two agents, the first parametric restriction

23In network literature, negative ties are mostly interpreted as the conceptualization of dislike, op-
position, antagonism and avoidance. For instance Bonacich and Lloyd (2004) investigate the effects
of negative ties on status formation where where being disliked by popular individuals deters status.
Everett and Borgatti (2014) examine how standard measures could be extended to networks including
negative ties. Kaur and Singh (2016) survey the literature on online social networks that include
negative ties. Our interpretation of negative influence is different than this literature, mainly because
we focus on the influence from observed behavior.
24Notice that a negative δi implies a positive denominator for pi(x, S), deeming the weight of wi(x)
negative and the weight of pj(x, S) positive, contradicting the notion of negative interaction defined
above.
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required to have a meaningful interpretation of negative influence as defined above is

δi > 0. The second restriction stems from the fact that pi is a probability. We require

δiwi(x) + 1 − δi ≥ 0 for each x. The detailed explanation for this restriction is left to

the appendix.

4.2. Generalization to multi-agent setting: We now introduce our most general

model of social interactions via a reparametrization of the previously introduced social

interaction model and parametric bounds that ensure stability and existence. To this

end, recall the model introduced in section 3, whereby for each i, j ∈ N with i 6= j,

αj
i is the influence that j exerts on i. Let δi ≡

1

1 +
∑

j 6=i αij

, δij ≡
αij

1 +
∑

j 6=i αij

where

1 +
∑

j 6=i

αij > 0. Observe that δi +
∑

j 6=i

δij = 1.

Definition. (p1, p2, ..., pn) has a general social interaction representation if for each

i ∈ N there exist wi ∈ ∆++(X), δi > 0, and δi ∈ ℜn−1 such that

(1) δi +
∑

j 6=i

δij = 1

(2) For every x, δiwi(x) +
∑

j 6=i

min{0, δij} > 0

and

pi(x, S) =
δiwi(x) + δi · p−i(x, S)

δiwi(S) + δi · 1

for all S and all x ∈ S.

Similar to the two agent case, δi > 0 is necessary to ensure a meaningful representa-

tion with negative influence. This is the first requirement for the validity of the general

model. Condition (2) ensures that every profile of probability measures of the other

agents is mapped to one with full support, as we explain in details in the appendix.

As we establish in Theorem 6, it provides the convergence of the dynamic adjustment

process. Once again, the detailed explanation for this choice of parametric bounds is

left to the appendix.
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4.3. Identification, Falsifiability and Stability: The identification strategy and

the characterization of the general model is very similar to that of the social inter-

action model. The identification equation, equation (7) remains the same, hence N-

Independence functions as the main characterizing property. Since the main difference

between these two models is the set of admissible values for the interaction coefficients,

a general boundedness property, that takes care of the bounds on the revealed γi is

required.

GN-Uniform Boundedness. [GN-UB ] For all z ∈ X, pi(z,X) > γi ·p−i(z,X)−
∑

j 6=i

min{0, γij} for some γi ∈ Bi with
∑

γij < 1.

Theorem 5. Let {pi}i∈N . Then, {pi}i∈N has a general social interaction repre-

sentation if and only if N-Independence and GN-Uniform Boundedness hold.

Unique identification of δi and wi is straightforward, as long as there are sufficient

number of linearly independent equations as elaborated in section 3. Thanks to the

reparametrization, δi is revealed to be the parameter that satisfies the identification

equation 7 for all S and x, y ∈ S, by N-I. Then, the preference parameters are revealed

by

wi(x) =
pi(x,X)− δi · p−i(x,X)

δi
.

We conclude this section with our most general stability result, that ensures conver-

gence and uniqueness of equilibrium for the general social interaction model. All other

stability results in the paper are corollaries of this.

Theorem 6. Take wi ∈ ∆++(x), δi > 0, and δi ∈ ℜN\{i} and

(1) δi +
∑

j 6=i

δij = 1

(2) For every x, δiwi(x) +
∑

j 6=i

min{0, δij} > 0.
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Then, there is a unique (p∗1, . . . , p
∗
N) ∈ ∆++(S)

N for which

p∗i (x, S) =
δiwi(x) + δi · p

∗
−i(x, S)

∑

y∈S[δiwi(y) + δi · p∗
−i(y, S)]

and for any (p11(·, S), . . . , p
1
N(·, S)) ∈ ∆++(S)

N , the iterative map

pti(x, S) =
δiwi(x) + δi · p

t−1
−i (x, S)

∑

y∈S[δiwi(y) + δi · p
t−1
−i (y, S)]

converges to (p∗1, . . . , p
∗
N).

Given the w and δ parameters, an explicit representation for this unique represen-

tation is possible in terms of inverses of matrices. This expression is standard, and

appears in the proof of Theorem 6. This expression demonstrates, for example, that

(p∗1, . . . , p
∗
N) ∈ ∆++(X)N is an affine function of (w1, . . . , wN).

25

5. Concluding Remarks

The identification of social interactions from observable behavior is an important

and highly topical agenda for economists. We believe that the use of choice theoretic

tools to study social interactions introduces a new perspective to this problem that has

traditionally been dealt with mostly econometrics tools.

Exploiting standard choice theoretic tools, this model, and others, should prove

useful for the identification of unobservable underlying interaction structures and pa-

rameters out of observable behavior. The strength of our identification strategy relies

on the novel source of variation we have introduced: the variation of the choice sets.

Whether the same insight can be applied to more general settings of interaction consti-

tutes an interesting future research avenue. One potential way to generalize our model

is via more flexible definitions of individual utilities a la Luce:

pi(x, S) =
Ui(x|S, αi, pj)

∑

y∈S Ui(y|S, αi, pj)

where Ui(x|S, αi, pj) represents agent i’s utility when she chooses alternative x from

budget S. In this paper, we aimed to come up with a particular Ui(·) that produces

25The same does not hold true for S ⊂ X , S 6= X in general.
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(p1, p2) (i) that is unique for a given set of parameters, (ii) out of which the underlying

parameters can be revealed uniquely with an arguably small amount of data, (iii) that

is axiomatizable, hence falsifiable, (iv) that is stable when accommodated within a

dynamic adjustment process, and (v) that can be produced as the outcome of well-

known interaction mechanisms such as a game, parametric social interaction models or

social learning, under appropriate assumptions. Our model assumes that Ui(x|S, αi, pj)

is a linear combination of the intrinsic utility and the choice probability of the other.

This linearity, combined with the asymmetric role played by the self vs influence over

different menus grants us the unique identification. One interesting close alternative

would be

U∗
i (x|S, αi, pj) = wi(x) +

αiwi(S)

1− αi

pj(x, S).

According to this formulation, the decision maker inherently places different weights on

the choice probability of others across different menus— non-linear weighting. What

makes this formulation interesting is that it boils down to a convex combination of two

Luce models as follows:

pi(x, S) = λi

wi(x)
∑

y∈S wi(y)
+ (1− λi)

wj(x)
∑

y∈S wj(y)

where λi =
1− αi

1− αiαj

. However, this model does not always lends itself to unique

identification of the underlying parameters out of observable behavior. Moreover, the

non-linearity prevents the model to be interpreted as the outcome of a random utility

maximization with social interactions or a Logit QRE. We hope that similar results

can be obtained by studying different forms of utility, which extends the insights of

this paper.

References

Alessio, D. and D. M. Kilgour (2011). Game theory and social psychology: Conformity

games. AIP Conference Proceedings 1368 (1), 209–212.
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6. Appendix

Proof of Theorem 1. (⇒) Let (p1, p2) with p1 6= p2 have a dual interaction repre-

sentation with (w1, w2, α1, α2).

First we assume that βi is well-defined and show that Equation 6 holds for all x, y

and S. Define βi ≡
αi

1 + αi

. Then βi

(
dj(x, S)

pi(x, S)
−

dj(y, S)

pi(y, S)

)

is equal to

=
αi

1 + αi

(
pj(x, S)− pj(x,X)

pi(x, S)
−

pj(y, S)− pj(y,X)

pi(y, S)

)

=
wi(x) + αipj(x, S)− wi(x)− αipj(x,X)

(1 + αi)pi(x, S)
−

wi(y) + αipj(y, S)− wi(x)− αipj(y,X)

(1 + αi)pi(y, S)

=
(wi(S) + αi)pi(x, S)− (1 + αi)pi(x,X)

(1 + αi)pi(x, S)
−

(wi(S) + αi)pi(y, S)− (1 + αi)pi(y,X)

(1 + αi)pi(y, S)

=
pi(y,X)

pi(y, S)
−

pi(x,X)

pi(x, S)

=
di(x, S)

pi(x, S)
−

di(y, S)

pi(y, S)
.

Since this holds for all S 6= X and distinct x, y ∈ S, Equation 6 holds for all x, y

and S.

Now we show that βi is indeed well-defined. We have three exhaustive cases. Fix

i, j ∈ {1, 2} with i 6= j and first let αi 6= 0. We will show that for some S 6= X and
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distinct x, y, we have
dj(x, S)

pi(x, S)
−

dj(y, S)

pi(y, S)
6= 0, hence, βi(x, y, S) exists. Assume for a

contradiction that
dj(x, S)

pi(x, S)
−

dj(y, S)

pi(y, S)
= 0 for all S and distinct x, y. Then,

dj(x, S)

pi(x, S)
−
dj(y, S)

pi(y, S)
= 0 ⇒

pj(x, S)− pj(x,X)

pi(x, S)
=

pj(y, S)− pj(y,X)

pi(y, S)

⇒
αipj(x, S)− αipj(x,X)

pi(x, S)
=

αipj(y, S)− αipj(y,X)

pi(y, S)

⇒
wi(x) + αipj(x, S)− wi(x)− αipj(x,X)

pi(x, S)
=

wi(y) + αipj(y, S)− wi(y)− αipj(y,X)

pi(y, S)

⇒
[wi(S) + αi]pi(x, S)− [1 + αi]pi(x,X)

pi(x, S)
=

[wi(S) + αi]pi(y, S)− [1 + αi]pi(y,X)

pi(y, S)

⇒
pi(x,X)

pi(x, S)
=

pi(y,X)

pi(y, S)

But since this holds for all S, x, y, then IIA would be satisfied, establishing a con-

tradiction with αi 6= 0. Now consider αi = 0 and αj 6= 0. Then pi has a Luce

representation and
di(x, S)

pi(x, S)
−

di(y, S)

pi(y, S)
= 0 for all S and x, y ∈ S. We now show that

for some S and distinct x, y ∈ S,
dj(x, S)

pi(x, S)
−

dj(y, S)

pi(y, S)
6= 0 so that I is satisfied for

βi =
αi

1 + αi

= 0. Assume for a contradiction that for all S and distinct x, y ∈ S,

dj(x, S)

pi(x, S)
−

dj(y, S)

pi(y, S)
= 0. Since αj 6= 0, we have

(9)
αj

1 + αj

(
di(x, S)

pj(x, S)
−

di(y, S)

pj(y, S)

)

=
dj(x, S)

pj(x, S)
−

dj(y, S)

pj(y, S)

for all S and distinct x, y ∈ S, as we have shown above. Take S and x, y ∈ S with
di(x, S)

pj(x, S)
6=

di(y, S)

pj(y, S)
and substitute dj(x, S) by dj(y, S)pi(x, S)/pi(y, S) in (9):

αj

1 + αj

(
di(x, S)

pj(x, S)
−

di(y, S)

pj(y, S)

)

=
dj(y, S)pi(x, S)

pj(x, S)pi(y, S)
−

dj(y, S)

pj(y, S)

αj

1 + αj

(
di(x, S)pj(y, S)− di(y, S)pj(x, S)

pj(x, S)pj(y, S)

)

=
dj(y, S)pi(x, S)pj(y, S)− dj(y, S)pj(x, S)pi(y, S)

pj(x, S)pi(y, S)pj(y, S)

αj

1 + αj

=
dj(y, S)[pi(x, S)pj(y, S)− pi(y, S)pj(x, S)]

pi(y, S)[di(x, S)pj(y, S)− di(y, S)pj(x, S)]
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As pi has a Luce representation, di(x, S) = pi(x, S)(1−wi(S)). We can then simplify

the expression as follows:

αj

1 + αj

=
dj(y, S)

pi(y, S)(1− wi(S))
=

dj(y, S)

di(y, S)
.

But then,

αj

1 + αj

=
dj(y, S)

di(y, S)
⇒

αjpi(y, S)− αjpi(y,X)

1 + αj

= pj(y, S)− pj(y,X)

⇒
wj(y) + αjpi(y, S)− wj(y)− αjpi(y,X)

1 + αj

= pj(y, S)− pj(y,X)

⇒
pj(y, S)[wj(S) + αj ]− pj(y,X)[1 + αj ]

1 + αj

= pj(y, S)− pj(y,X)

⇒
pj(y, S)[wj(S) + αj ]

1 + αj

− pj(y,X) = pj(y, S)− pj(y,X)

Contradiction since wj(S) 6= 1.

Finally, let αi = αj = 0. We claim that there exists S and distinct x, y ∈ S such

that
dj(x, S)

pi(x, S)
−

dj(y, S)

pi(y, S)
6= 0 so that βi =

αi

1 + αi

= 0 solves (6) for all S and distinct

x, y ∈ S. Assume for a contradiction not. Since pj allows a Luce representation,

dj(x, S) = (1 − wj(S))pj(x, S). But then,
dj(x, S)

pi(x, S)
=

dj(y, S)

pi(y, S)
implies

pj(x, S)

pi(x, S)
=

pj(y, S)

pi(y, S)
. Since this would be the case for all S and x, y ∈ S, we would have pi = pj ,

contradiction. Thus, we have established I for all cases with βi ≡ βi(x, y, S) =
αi

1 + αi

.

Nn follows directly. UB follows from wi(x) > 0 for all x since wi(x) = (1 +

αi)pi(x,X)− αipj(x,X). Then we have
pi(x,X)

pj(x,X)
> βi, establishing necessity.

(⇐) Let p1 6= p2 satisfy the axioms. Now define βi ≡ βi(x, y, S) by I. UB implies

βi 6= 1 since otherwise 1 <
pi(x,X)

pj(x,X)
for all x ∈ X yields pi(x,X) > pj(x,X), from

which it follows that 1 =
∑

x∈X

pi(x,X) >
∑

x∈X

pj(x,X) = 1, a contradiction. Since

βi 6= 1, define αi :=
βi

1− βi

.

We claim that αi ≥ 0. Observe that by UB, βi < 1. Joint with Nn, this means

βi ∈ [0, 1). Hence it follows that αi =
βi

1− βi

≥ 0.
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Next, we define weights for each alternative:

wi(x) ≡ pi(x,X) + αi(pi(x,X)− pj(x,X)).

Observe that
∑

x∈X

wi(x) = 1.

Now take any S 6= X with distinct x, y ∈ S. Then:

di(x, S)

pi(x, S)
−

di(y, S)

pi(y, S)
=

αi

1 + αi

[
dj(x, S)

pi(x, S)
−

dj(y, S)

pi(y, S)

]

pi(y,X)

pi(y, S)
−

pi(x,X)

pi(x, S)
= αi

[
dj(x, S)− di(x, S)

pi(x, S)
−

dj(y, S)− di(y, S)

pi(y, S)

]

pi(x,X) + αidj(x, S)− αidi(x, S)

pi(x, S)
=

pi(y,X) + αidj(y, S)− αidi(y, S)

pi(y, S)

pi(x,X) + αidj(x, S)− αidi(x, S) + αipi(x, S)

pi(x, S)
=

pi(y,X) + αidj(y, S)− αidi(y, S) + αipi(y, S)

pi(y, S)
.

The last equality is obtained by adding αi to both sides of the previous equality.

Notice that as −αidi(x, S) + αipi(x, S) = αipi(x,X), the numerators of both of the

sides are nonzero. Hence:

pi(x, S)

pi(y, S)
=
pi(x,X) + αidj(x, S)− αidi(x, S) + αipi(x, S)

pj(y,X) + αidj(y, S)− αidi(y, S) + αipi(y, S)

=
pi(x,X) + αi(pi(x,X)− pj(x,X)) + αipj(x, S)

pi(x,X) + αi(pi(x,X)− pj(x,X)) + αipj(x, S)

=
wi(x) + αipj(x, S)

wi(y) + αipj(y, S)
.

Observe in particular that this equality holds even in the case x = y. Now, for any

x, y ∈ S, we have

pi(y, S) = pi(x, S)
wi(y) + αipj(y, S)

wi(x) + αipj(x, S)

so that
∑

y∈S

pi(y, S) =
∑

y∈S

pi(x, S)
wi(y) + αipj(y, S)

wi(x) + αipj(x, S)
.

Conclude

1 = pi(x, S)

∑

y∈S(wi(y) + αipj(y, S))

wi(x) + αipj(x, S)
.
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Consequently,

pi(x, S) =
wi(x) + αipj(x, S)

∑

y∈S(wi(y) + αipj(y, S))
.

We finally show that wi(x) > 0 for all x ∈ X . For all x ∈ X ,
pi(x,X)

pj(x,X)
> βi =

αi

1 + αi

. Here, we obtain (αi+1)pi(x,X) > αipj(x,X) for all x. Consequently, wi(x) =

pi(x,X) + αi[pi(x,X)− pj(x,X)] > 0 for all x.

�

Derivation of stochastic choice function from utility maximization with

log-logistic errors:

Let Ui(x) = Vi(x)εi(x) where Vi(x) = wi(x) + αipj(x). Under the assumption that

the disturbances are i.i.d. with a Log-logistic distribution (i.e., ηi = log εi follows a

Type 1 extreme value distribution) with g(ηi) = e−ηie−e−ηi , maximization of log-utility

yields:

logUi(x) = log Vi(x) + ηi(x)

pi(x) = Prob (log Vi(x) + ηi(x) > log Vi(y) + ηi(y)), ∀y 6= x)

= Prob

(

ηi(y) < log

(
Vi(x)εi(x)

Vi(y)

)

, ∀y 6= x

)

Then for a given ηi(x), using the cdf G(ηi):

Prob (x|ηi(x)) =
∏

y 6=x

exp
{

− e
− log

(

Vi(x)εi(x)

Vi(y)

)}

which leads to:

pi(x) =

∫
+∞

−∞

(
∏

y 6=x

exp
{

− e
− log

(

Vi(x)εi(x)

Vi(y)

)}
)

e−ηi exp{−e−ηi}dηi

pi(x) =

∫
+∞

−∞

(
∏

y

exp
{

− e
− log

(

Vi(x)εi(x)

Vi(y)

)}
)

e−ηidηi
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The second line above is observed by collecting terms in the exponent of e given that
Vi(x)

Vi(x)
= 1.

pi(x) =

∫
+∞

−∞

exp
{

−
∑

y

e
− log

(

Vi(x)εi(x)

Vi(y)

)}

e−ηidηi

=

∫
+∞

−∞

exp
{

− e−ηi
∑

y

e
− log

(

Vi(x)

Vi(y)

)}

e−ηidηi

Apply a transformation of variables as t = e−ηi(x) such that dt = −e−ηi(x)dηi. Note

that as ηi approaches infinity, t approaches zero, and as ηi approaches negative infinity,

t becomes infinitely large.

pi(x) =

∫
0

∞

− exp
{

− t
∑

y

e
− log

(

Vi(x)

Vi(y)

)}

dt

=

∫
0

∞

− exp
{

− t
∑

y

Vi(y)

Vi(x)

}

dt

=
e
−t

∑
Vi(y)

Vi(x)

∑

Vi(y)
Vi(x)

∣
∣
∣
∣
∣

0

∞

=
Vi(x)
∑

y

Vi(y)
=

wi(x) + αipj(x)
∑

y

(wi(y) + αipj(y))

�

Proof of Theorem 3. (⇒) Let (p1, p2, ..., pn) be a social interaction model. For any

i, define βi ∈ Rn−1 such that βij =
αij

1 +
∑

j 6=i

αij

for all j 6= i. We will first show βi ∈ Bi.

First let αij = 0 for all i and j with i 6= j. Then, for all i, pi has a Luce representation

and hence di(x, S) = (1 − wi(S))pi(x, S). Moreover
di(x, S)

pi(x, S)
−

di(y, S)

pi(y, S)
= 0 for all S

and distinct x, y. Hence βi = 0 is an element in Bi.

Now let αi 6= 0 for some i. Take any S and any distinct x, y ∈ S. Then βi ·(
d−i(x, S)

pi(x, S)
−

d−i(y, S)

pi(y, S)

)

is equal to



45

=
∑

j

βij(pj(x, S)− pj(x,X))

pi(x, S)
−
∑

j

βij(pj(y, S)− pj(y,X))

pi(y, S)

=
∑

j

αij(pj(x, S)− pj(x,X))

(1 +
∑

j

αij)pi(x, S)
−
∑

j

αij(pj(y, S)− pj(y,X))

(1 +
∑

j

αij)pi(y, S)

=

wi(x) +
∑

j

αijpj(x, S)− wi(x)−
∑

j

αijpj(x,X)

(1 +
∑

j

αij)pi(x, S)
−

wi(y) +
∑

j

αijpj(y, S)− wi(y)−
∑

j

αijpj(y,X)

(1 +
∑

j

αij)pi(y, S)

=

pi(x, S)[wi(S) +
∑

j

αij ]− pi(x,X)[1 +
∑

j

αij]

(1 +
∑

j

αij)pi(x, S)
−

pi(y, S)[wi(S) +
∑

j

αij ]− pi(y,X)[1 +
∑

j

αij ]

(1 +
∑

j

αij)pi(y, S)

=

[wi(S) +
∑

j

αij ]

(1 +
∑

j

αij)
−

pi(x,X)

pi(x, S)
−

[wi(S) +
∑

j

αij ]

(1 +
∑

j

αij)
+

pi(y,X)

pi(y, S)

=
pi(y,X)

pi(y, S)
−

pi(x,X)

pi(x, S)
,

establishing βi ∈ Bi.

Certainly, βi ∈ Rn−1
+ as αij ≥ 0 for all i, j with i 6= j. N-PUB then follows from

wi(x) > 0 for all x, since wi(x) = pi(x,X) +
∑

j 6=i

αij(pi(x,X) − pj(x,X)) > 0 ⇒

(1 +
∑

j 6=i

αij)pi(x,X) >
∑

j 6=i

αijpj(x,X) ⇒ pi(x,X) > βi · p−i(x,X).

(⇐) Take (p1, p2, ..., pn) satisfying our axioms. Take any i ∈ N , x, y and S and

by N-I, take βi ∈ Bi, which also satisfies N-PUB. Further, define αi ∈ Rn−1 such

that αij =
βij

1−
∑

j 6=i βij

. We first show that αi is well-defined and nonnegative since

∑

j 6=i

βij < 1. This is because by N-PUB, pi(x,X) > βi · p−i(x,X) for all x, we have

1 =
∑

x∈X

pi(x,X) >
∑

x∈X

βi · p−i(x,X) =
∑

j 6=i

βij. Hence, αi ∈ Rn−1
+ is well-defined for

all βi as claimed.
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Notice we then have
1

1 +
∑

j 6=i αij

αi = βi. Now define

wi(x) := pi(x,X) +αi · [pi(x,X)1− p−i(x,X)]

where 1 ∈ Rn−1 is a vector of ones and observe that

∑

x∈X

wi(x) =
∑

x∈X

(pi(x,X) +αi · [pi(x,X)1− p−i(x,X)])

= 1 +αi ·

[
∑

x∈X

pi(x,X)1−
∑

x∈X

p−i(x,X)

]

= 1 +αi(1− 1)

= 1.

By N-I,

1

1 +
∑

j 6=i αij

αi ·

(
d−i(x, S)

pi(x, S)
−

d−i(y, S)

pi(y, S)

)

=
pi(y,X)

pi(y, S)
−

pi(x,X)

pi(x, S)

(1 +
∑

j 6=i αij)pi(x,X) +αi · p−i(x, S)−αi · p−i(x,X)

pi(x, S)
=

(1 +
∑

j 6=i αij)pi(y,X) +αi · p−i(y, S)

pi(y, S)

−
αi · p−i(y,X)

pi(y, S)
.

Notice that numerators in both of the sides are positive since pj(x, S) > pj(x,X) for

all j, x and S. Hence

pi(x, S)

pi(y, S)
=
pi(x,X) +αi · [pi(x,X)1− p−i(x,X)] +αi · p−i(x, S)

pi(y,X) +αi · [pi(y,X)1− p−i(y,X)] +αi · p−i(y, S)

=
wi(x) +αi · p−i(x, S)

wi(y) +αi · p−i(y, S)
.
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But then, since this claim holds for all y ∈ S:

pi(y, S) = pi(x, S)
wi(y) +αi · p−i(y, S)

wi(x) +αi · p−i(x, S)
∑

y∈S

pi(y, S) =
∑

y∈S

pi(x, S)
wi(y) +αi · p−i(y, S)

wi(x) +αi · p−i(x, S)

1 = pi(x, S)

∑

y∈S [(wi(y) +αi · p−i(y, S)]

wi(x) +αi · p−i(x, S)

pi(x, S) =
wi(x) +αi · p−i(x, S)

∑

y∈S [wi(y) +αi · p−i(y, S)]
.

We finally show that wi(x) > 0 for all x ∈ X . This is established by N-PUB. Since

pi(x,X) > βip−i(x,X) and 1+
∑

j 6=i

αij > 0, then, (1+
∑

j 6=i

αij)pi(x,X) > αip−i(x,X) ⇒

wi(x) > 0. �

General Social Interaction Model: Derivation of parametric bounds

With negative interactions in play, existence and stability are not straightforward

implications of the model. In particular certain parametric restrictions are required

to ensure that the linear aggregation procedure defines a probability, and the model

remains meaningful for the dynamic adjustment procedure of subsection 2.4.

First, let n = 2 and consider the two indiviudal model introduced in section 4:

pi(x, S) =
δiwi(x) + (1− δi)pj(x, S)

δiwi(S) + 1− δi
.

In order to find the bounds on the parameters, first suppose that pj(x, S) = 0. It

follows that

pi(x, S) =
δiwi(x)

δiwi(S) + 1− δi
.

This term will be non-negative and well-defined exactly when δiwi(S) + 1 − δi > 0.

So, this is a first necessary condition for all S. As a second observation, suppose that

pj(x, S) = 1. It follows that pi(x, S) =
δiwi(x) + 1− δi
δiwi(S) + 1− δi

. Given that δiwi(S)+ 1− δi >

0, this term will be nonnegative exactly when δiwi(x) + 1 − δi ≥ 0. Observe that

δiwi(x) + 1 − δi ≥ 0 for each x already implies the first condition, hence making it
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redundant. Thus with two agents, δi > 0 is required to have a meaningful interpretation

of negative influence and the condition that δiwi(x) + 1 − δi ≥ 0 for each x ensures

that pi remains a well-defined probability.

Now let n > 2 and consider the general social interactions model. Similar to the

two agent case, δi > 0 is necessary to ensure a meaningful representation with negative

influence. This is the first requirement for the validity of the general model. In order

to ensure that, no matter what p−i(x, S) is, pi(x, S) is a well-defined probability, the

condition we require is

δiwi(x) +
∑

j 6=i

min{0, δij} ≥ 0

for all x, and in particular, for every S, that there exists some x for which the inequality

is strict. To see the reasoning under this condition, first imagine that p−i(x, S) = 0.

Then pi(x, S) =
δiwi(x)

δiwi(S) +
∑

j 6=i δij
. Consequently, for δi > 0, it follows that δiwi(S)+

∑

j 6=i

δij > 0 ensures a positive pi(x, S). Second, suppose that p−i(x, S) = 1{j:δij<0}.

This then implies that pi(x, S) =
δiwi(x) +

∑

j 6=imin{0, δij}

δiwi(S) +
∑

j 6=i δij
. Hence, jointly with the

previous condition, to have a well-defined probability, we must ensure that

δiwi(x) +
∑

j 6=i

min{0, δij} ≥ 0

for all x, and in particular, for every S, that there exists some x for which the inequality

is strict. In particular, it is only a slight loss of generality to assume that the inequality

is strict for every x. Thus, for all x, we have:

(10) δiwi(x) +
∑

j 6=i

min{0, δij} > 0.

Equation (10) ensures that every profile of probability measures of the other agents

is mapped to one with full support. Hence, it is a sufficient and almost necessary

condition for the dynamic adjustment procedure to always result in a probability mea-

sure, providing existence. It is necessary and sufficient to always map any probability
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measure into a full-support probability measure. As we establish in Theorem 6, it also

provides the convergence of the dynamic adjustment process.

Equation (10) has a very simple interpretation. Recall that the numerator of the

expression defining choice reflects the relative propensity to choose. Equation (10) re-

quires that this propensity to choose be positive, independently of the choices of others.

�

Proof of Theorem 5. (⇒) Let (p1, p2, ..., pn) be a general social interaction model.

We will first show δi ∈ Bi.

First let δij = 0 for all i and j with i 6= j. Then, for all i, pi has a Luce representation

and hence di(x, S) = (1 − wi(S))pi(x, S). Moreover
di(x, S)

pi(x, S)
−

di(y, S)

pi(y, S)
= 0 for all S

and distinct x, y. Hence δi = 0 is an element in Bi.

Now let δi 6= 0 for some i. Take any S and any distinct x, y ∈ S. Then δi ·(
d−i(x, S)

pi(x, S)
−

d−i(y, S)

pi(y, S)

)

is equal to

=
∑

j

δij(pj(x, S)− pj(x,X))

pi(x, S)
−
∑

j

δij(pj(y, S)− pj(y,X))

pi(y, S)

=
δiwi(x) + δip−i(x, S)− δiwi(x)− δip−i(x,X)

pi(x, S)
−

δiwi(y) + δip−i(y, S)− δiwi(y)− δip−i(y,X)

pi(y, S)

=

pi(x, S)[δiwi(S) +
∑

j

δij]− pi(x,X)

pi(x, S)
−

pi(y, S)[δiwi(S) +
∑

j

δij]− pi(y,X)

pi(y, S)

=
pi(y,X)

pi(y, S)
−

pi(x,X)

pi(x, S)
,

establishing δi ∈ Bi.

Since δi > 0, we have
∑

j

δij < 1. GN-UB then follows from δiwi(x)+
∑

j 6=i

min{0, δij} >

0 for all x, since δiwi(x) = pi(x,X)− δi · p−i(x, S).

(⇐) Take (p1, p2, ..., pn) satisfying our axioms. Take any i ∈ N , x, y and S and by

N-I, take δi ∈ Bi, which also satisfies GN-UB. Let δi = 1 −
∑

δij . Notice δi > 0 by

GN-UB.
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Now define

wi(x) :=
pi(x,X)− δi · p−i(x,X)

δi
and observe that

∑

x∈X

wi(x) =
1−

∑
δij

δi
= 1.

GN-UB then ensures that δiwi(x) +
∑

j 6=i

min{0, δij} > 0 and hence wi(x) > 0 for all

x ∈ X .

By N-I,

δi ·

(
d−i(x, S)

pi(x, S)
−

d−i(y, S)

pi(y, S)

)

=
pi(y,X)

pi(y, S)
−

pi(x,X)

pi(x, S)

pi(x,X) + δi · p−i(x, S)− δi · p−i(x,X)

pi(x, S)
=

pi(y,X) + δi · p−i(y, S)− δi · p−i(y,X)

pi(y, S)
.

Notice that numerators in both of the sides are positive by GN-UB. Hence

pi(x, S)

pi(y, S)
=
pi(x,X) + δi · p−i(x, S)− δi · p−i(x,X)

pi(y,X) + δi · p−i(y, S)− δi · p−i(y,X)

=
δiwi(x) + δi · p−i(x, S)

δiwi(y) + δi · p−i(y, S)
.

But then, since this claim holds for all y ∈ S, as before, we arrive at

pi(x, S) =
δiwi(x) + δi · p−i(x, S)

∑

y∈S [δiwi(y) + δi · p−i(y, S)]

establishing the proof. �

Proof of Theorems 2, 4, and 6. Let us suppose without loss that |S| ≥ 2.

We use the standard parametrization with αj
i ≡

δij
δi
, in the case of Theorem 6.

Given any affine function f(x) = Ax + b, where x ∈ R
|N ||S|, A ∈ R

|N ||S|×|N ||S|, and

b ∈ R
|N ||S|. It is well-known that there is a unique x∗ ∈ R

|N ||S| for which for any x1,

the process xt = f(xt−1) converges to x∗ if the maximal absolute value of an eigenvalue

of A has value less than 1. See for example, Varga (1962), Theorem 1.4. We will
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show that, in our case, this unique fixed point will be a member of ∆(S)N , because

f(∆(S)N) ⊆ ∆(S)N .

To this end, let us describe the matrix A and vector b in which we take inter-

est. To ease the exposition, let α̂ij =
αij

wi(S) +
∑

j 6=i αij

for j 6= i, and ŵi(x) =

wi(x)

wi(S) +
∑

j 6=i αij

. Here, each 0 is the S × S matrix of zeroes, and I denotes the

identity matrix in S × S.

Now, we let the matrix A =










0 α̂12I . . . α̂1nI

α̂21I 0 . . . α̂2nI
...

...
...

α̂n1I α̂n2I . . . 0










and let b =










ŵ1

ŵ2

...

ŵn










, so that

the iterated vector is of the form pt =










pt1

pt2
...

ptn










.

Finally, by Corollary 1 on p. 17 of Varga (1962), we conclude that the maximal

absolute value of an eigenvalue is bounded above by max
i

∑

j 6=i

|α̂ij|. But for each i, we

know that
∑

j 6=i

|α̂ij | =
∑

j 6=i

|αij|

wi(S) +
∑

j 6=i αij

. Now, by assumption, and since |S| ≥ 2,

0 < wi(S)+2
∑

j 6=i

min{0, αij}.
26 Observe then that, by adding to each side of this strict

inequality
∑

j 6=i

|αij | we obtain
∑

j 6=i

|αij| < wi(S)+
∑

j 6=i

αij . Therefore, by definition of α̂,

we conclude
∑

j 6=i

|α̂ij| < 1, which is what we wanted to show.

26Let x, y ∈ S for which x 6= y. Then wi(x) +
∑

j 6=i

min{0, αij} > 0 and wi(y) +
∑

j 6=i

min{0, αij} > 0, so

that 0 < wi(x) + wi(y) + 2
∑

j 6=i

min{0, αij} ≤ wi(S) + 2
∑

j 6=i

min{0, αij}.



52

As a last point, we observe that the solution p∗ is the unique vector satisfying

p∗ = Ap∗ + b, or in other words, p∗ = (I − A)−1b. �


