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Abstract

We explore the inequality measurement of an ordinal categorical variable between

social groups. Our methodology is built on adapting well-known principles of cardinal

inequality measurement such as Pigou-Dalton transfers, Lorenz dominance and the link

to the Gini Index, to the ordinal inequality between groups setting. These principles

lead us to the Net Difference Index (Lieberson, 1976). Net Difference Index makes

use of rank-domination to evaluate the discrepancy between the distributions of two

social groups over ordered categories. Specifically, it is equal to the difference between

the probabilities that on a random selection of two individuals from two groups, the

member of one of the groups occupies a higher rank than the counter group member.

We provide a novel characterization of this index based on reasonable properties.
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Inequality measurement of ordinal variables have received a major attention in the last

two decades, as the importance of non-income variables in determining societal wellbeing

has been widely acknowledged (Allison and Foster, 2004; Naga and Yalcin, 2008; Kobus,

2011; Lazar and Silber, 2013; Lv et al., 2015; Cowell and Flachaire, 2017; Gravel et al.,

2020). We contribute to this literature by analysing inequality measurement with two critical

aspects: First, we focus on between-group inequalities. Rather than evaluating the overall

distribution of a variable in the society, we investigate how to quantify the discrepancies
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between distributions of a variable among social groups. Second, our variable of interest is

of ordinal categorical nature. Hence, we explore the inequality measurement of an ordinal

categorical variable between social groups.

Being crucial constructs for social conflict and unrest, between-group inequalities are

considered to be important determinants of social and economic welfare (Langer, 2005; Os-

tby, 2008; Stewart, 2010). However, unlike between-group income inequality measurement

(Bourguignon, 1979; Shorrocks, 1980; Cowell, 1980; Elbers et al., 2008), measurement of

non-income between-group inequalities have not received a systematic treatment in the form

of a progressively developing literature. Instead, in different strands of research, such as

statistical sociology (Gastwirth, 1975; Lieberson, 1976; Blackburn et al., 2001), segregation

measurement (Hutchens, 2006; Reardon, 2009; del Ŕıo and Alonso-Villar, 2012) or dissimi-

larity measurement (Andreoli and Zoli, 2014), both for empirical and theoretical purposes,

stand alone tools are developed for the assessment of the uneven distribution of non-income

variables between groups, such as educational attainment, health, occupational status or

subjective well-being.1 Shooting at this gap, our aim is to develop a justified framework

to evaluate ordinal inequalities between groups that is based on foundational analysis. Our

methodology is to draw analogies and adopt principles from well-established tools of cardinal

inequality measurement such as Pigou-Dalton transfers, Lorenz ordering and its link to the

Gini Index and adapt those to the particulars of our setting. Hence we demonstrate a similar

approach to Le Breton et al. (2012) of discrimination measurement and to Hutchens (1991)

of segregation measurement literatures.

A quick fix to the inequality measurement of ordinal variables has been to transform these

ordinal variables to cardinal ones by using specific cardinalisations in order to enable the

use of measures of income inequality.2 However as first shown by Allison and Foster (2004)

application of cardinal measures over these ordinal variables might result in incomparable

levels of inequalities for different societies since these techniques are sensitive to scale changes,

1These non-income variables are not necessarily cardinal in nature; instead they define ordinal categories.

Educational attainment, the highest level of education attained is a widely used indicator, standardized

by the International Standard Classification of Education (ISCED) by UNESCO. It is considered to be an

improvement over ‘years of schooling’ since it accounts for different duration of analogous school cycles in

different countries (Meschi and Scervini, 2011). The data on health and subjective well-being are collected

via nation-wide surveys. For practical purposes these variables are either defined over ordered categories

such as ‘poor, fair, good, excellent’ or over a scale such as ‘1,2,3,4’, where 1 corresponding to ‘poor’, ‘2’ to

‘fair’ and so on.
2For instance, in the measurement of inequality in educational attainment, although the data is collected

over attainment categories, a common practice has been to assign the average number of years of schooling

to corresponding categories (Barro and Lee, 1993, 1996, 2001; Thomas et al., 2001).
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i.e.; once the scale changes, measured inequality changes.3 Certainly our setting is not

immune to the same problem. Consider the following example:

Example: Society A and Society B consist of 100 women and 100 men with the below

distributions over 4 categories of an ordinal variable. Let us assume that a researcher wants

to adopt a well-known measure of between group income inequality, Between Group Gini

Index (GG)4 and hence makes use of a specific cardinalisation of this ordinal variable that

assigns each category a value from 0 to 50.5 The corresponding scale is given by the first

columns of the tables above, where the second and third columns denote the number of

individuals from each social group in each category.

Society A

Categories Women Men

4th Level: 47 50 40

3rd Level: 32 10 20

2nd Level: 21 12 20

1st Level: 14 28 20

Society B

Categories Women Men

4th Level: 47 55 50

3rd Level: 32 10 20

2nd Level: 21 12 20

1st Level: 14 23 10

The researcher concludes that there is more inequality between groups in Society A than B

since GG(A) = 0.007193144 > GG(B) = 0.005050505. However if a different cardinalisation

had been used, where the scaling is approximated to a single digit, i.e., 4 instead of 47, 3

instead of 32 and so on, the conclusion would have been that the between group inequality

is higher in Society B since GG(A) = 0.001779359 < GG(B) = 0.010708402.

There exists a need for going beyond measures of income inequality and developing justi-

fied measurement methodologies for the evaluation of these non-income inequalities between

social groups. That is what we aim to do. We focus on two social groups and first sug-

gest simple tools enabling us to compare societies unambiguously in terms of the ordinal

between-group inequality they possess. Dominance weakening transfers and the Dominance

curve make use of stochastic dominance to compare societies and they can be seen as anal-

ogous to Pigou-Dalton transfers and Lorenz curve of the income inequality measurement.

3One strategy that has been developed by the literature is to come up with specific cardinalisations that

are immune to scale changes so that measured inequality becomes invariant to scale. See Naga and Yalcin

(2008), Kobus and Milos (2012) and Cowell and Flachaire (2017) for more on this approach.
4Between Group Gini Index is computed by replacing the income values (in this case, cardinal scores) of

each group member by the mean income of their respective group. For this example with two groups, it can

be computed as GG = WM |µW−µM |
(W+M)2µ , where W,M denote the population of Women and Men, respectively;

µ values stand for the mean scores of Women, Men and the total population respectively.
5For instance mean age, the median number of years of schooling and experience, average life expectancy,

occupational prestige score, etc...
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Naturally, they do not provide a complete ranking of societies. To this purpose, mimicking

the relationship of the Gini index to the Lorenz curve, integration of the Dominance curve

leads us to the Net Difference Index (Lieberson, 1976). The main novel contribution of the

paper is the characterization of the Net Difference Index by a set of reasonable properties

for an ordinal between-group inequality measure.

Net Difference Index makes use of rank-domination to evaluate the discrepancy between

the distributions of two social groups over ordered categories. Specifically, it is equal to the

average difference between number of dominations by groups, where domination is defined as

occupying a higher ranked position than a counter-group member.6 Intuitively the average

number of dominations by a group is equal to the probability that a randomly chosen member

occupies a higher rank than a randomly chosen counter-group member. Gastwirth (1975)

suggests the use of this probability as a measure of earning differentials between genders,

yielding Gastwirth’s Discrimination Index.7 Essentially, Net Difference Index evaluates the

ordinal inequality between two groups as the difference between their respective (discretized)

Gastwirth indices.

The characterization of the Net Difference Index is provided by 4 properties: Strong

Transfers that ensure a monotonic response of the index to certain transfers; Directionality

that is responsible from symmetric comparison between the groups around 0; Successive

Proportional Merges that accounts for invariance to the merges of adjacent positions with

the same between group ratios; and finally, Decomposability that allows for overall inequality

to be expressed as a weighted average of the inequalities in subparts of the society. We

discuss the significance of each of these properties for the behavior of Net Difference Index

in Subsection 2.2 and propose related indices that satisfy all but one of the stated properties.

We pay particular attention to Directionality and devote an entire subsection, Subsection

2.3, to the characterization of a new variation of the index where Directionality is replaced

with a property that ensures symmetric treatment of the groups.

To the best of our knowledge, this is the first paper to fully characterize an index of

between-group inequality designed for ordinal categorical variables. The closest work from

6Net Difference Index is based on Mann-Whitney’s U Statistics (Mann and Whitney, 1947), which gives

a non-parametric rank test that is used to determine if two samples are from the same population. The

Statistics U is simply the number of times the observations from one sample precede the observations from the

other sample when all of the observations are ordered into a single ranked series. The probability distribution

tables of U are provided for testing the null hypothesis that two samples share the same distribution. The

Statistics U is different from well-known Wilcoxon rank-sum statistics (Wilcoxon, 1945) only in that U allows

for different sample sizes.
7For a detailed analysis of how Gastwirth measure relates to stochastic dominance, see Le Breton et al.

(2012).
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the literature in terms of methodology and purposes (axiomatic characterization of a method

to evaluate the discrepancy of group distributions over ordered categories) can be found in

Andreoli and Zoli (2014). As a part of a larger research agenda that links segregation,

ordinal inequality and discrimination, they propose an ordering of societies according to

the discrepancy of the group distributions over ordered categories. They call this notion

‘dissimilarity preserving ordinal information’ and the main difference with the between-

group ordinal inequality measurement principles we have in this paper comes from an axiom,

Interchange of Groups, that allows to swap group distributions for certain sets of adjacent

positions. This basically implies separability of the evaluation across positions, a property

that is not satisfied by the Net Difference Index, simply because at each position, not only

the distributions at that position matter, but the distribution of the lower ranked or higher

ranked counter-group members is equivalently important. We believe this is a desirable

property for an ordinal inequality measure. It is worth adding that the dissimilarity ordering

also respects Successive Proportional Merges (named Independence from Split of Classes in

that work).

A related strand of research that explores the uneven distribution of social groups across

ordered categories comes from the literature on ordinal segregation. In a seminal paper,

Reardon (2009) conceptualizes ordinal segregation as ‘the extent to which variation within

social groups is less than total variation in the population’, and suggests several indices that

depend on the distances of the distributions of groups to a completely polarized distribution.

This paper does not present any characterizations, but suggests a set of properties for this

setting, that are not necessarily appropriate for our question of between group inequality.

This is because the main focus of segregation for that work is how the distribution within

each social group compares to the distribution in the society, rather than how social groups

compare to each other.

A final related line of work originates from the decomposability of ordinal inequality

measures (Allison and Foster, 2004; Naga and Yalcin, 2008; Kobus and Milos, 2012; Dutta

and Foster, 2013). Although these measures are developed to measure the overall inequality

of an ordinal variable, they might possess decomposability properties that allow the overall

inequality to be expressed as an aggregation of the inequalities within groups and between

groups. Then a comparison of their between-group counterpart to our methodology would

be relevant. Kobus and Milos (2012) provide a characterization of a decomposable family of

indices that respect Allison and Foster partial ordering (Allison and Foster, 2004). However

their decomposability property does not allow for between-group comparisons; instead it

aggregates inequality values within subgroups, weighted by subgroup sizes. Thus the indices
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that belong to this family, the Absolute Value Index of Naga and Yalcin (2008) and Apouey

(2007), do not possess between-group inequality counterpart. Dutta and Foster (2013) de-

compose the overall inequality of happiness (as quantified by self reported subjective well-

being data) in the US over groups of race, gender and region, by using the Allison-Foster

index (AF )(Allison and Foster, 2004). They, too, end up without any between-group in-

equality since the median category for all of the social groups happens to be the same (the

data comes over 3 happiness categories, and hence it is not unreasonable that all social groups

have their median reporting in the second category). When all groups have the same median,

AF expresses overall inequality as a weighted sum of the inequalities within subgroups, just

like the decomposability considered in Kobus and Milos (2012). Decomposability of AF with

different subgroup medians have not been explored.

In the following section, we introduce the basic set up and the preliminaries of comparing

societies with respect to the ordinal between group inequality. Section 2 introduces the Net

Difference Index. We provide a set of properties and the foundational analysis of the Net

Difference Index in this section. Subsection 2.2 discusses the independence of characterizing

properties as well as related indices. We devote Subsection 2.3 to the version of the index

without directionality property. Finally, Section 3 concludes with possible extensions of the

framework. All proofs are left to an appendix.

1 The Setting

Consider an ordinal variable with finite number of categories. Let us call each category of this

variable as a ‘position’. Let n denote the number of positions. The ordering of the positions

is exogenous and known. For positions 1, 2, 3, ..., n, we adopt the convention that 1 is a better

position than 2, which is a better position than 3 and so on. We denote a generic position

by i or j so that i < j implies i is a better position than j. A society S ∈ C = ∪n∈Z++Rn×2
+

consists of two social groups, say Women and Men, distributed over n ordered positions.8

Let Wi and Mi denote the number of Women and Men in position i, respectively, with

(W1,W2, ...,Wn) = WT , (M1,M2, ...,Mn) = MT (T stands for transpose) and
!n

i=1 Wi = W ,
!n

i=1 Mi = M . Assume, W > 0 and M > 0. Then S = (W,M) represents a society where

the first column corresponds to the distribution of the population of women over ordered

positions and the second column shows that of men. When convenient, frequencies are used,

8Rn×2
+ refers to n × 2 Real matrices with nonnegative entries. Use of Real domain is not an uncommon

practice in measurement literature. For instance, part-time workers might be treated as fractional workers,

etc. (Hutchens, 1991; Andreoli and Zoli, 2014).
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denoted by wi =
Wi

W
, mi =

Mi

M
and (w1, w2, ..., wn) = wT , (m1,m2, ...,mn) = mT .

1.1 A Partial Ranking: Dominance Preorder

We first aim to present an unambiguous ranking criteria, just like Pigou-Dalton transfers and

Lorenz ordering of income inequality, for our setting. Given the ordinality of the variable of

interest, stochastic dominance is a most natural reference, as it is scale independent. The

distribution of Women first order stochastically dominates that of Men, W ≻SD M, if for

any position i, the proportion of women occupying positions at least at good as i are never

less than that of men; i.e.; for any i,
!i

1 wi ≥
!i

1 mi with at least one strict inequality.

We define a dominance weakening transfer as promoting members of the domi-

nated group or demoting members of the dominant group without eliminating the stochas-

tic dominance. Specifically, if W ≻SD M, then any transfer of mass δ > 0 such that

W′ = (W1, ...,Wi − δ, ...,Wj + δ, ...,Wn) (or M′ = (M1, ...,Mi + δ, ...,Mj − δ, ...,Mn)) for

some i < j with W′ ≻SD M (or W ≻SD M′) is a dominance weakening transfer. Similarly,

if M ≻SD W, then promoting women from j to i or demoting men from i to j for some i < j

by preserving the stochastic dominance is a dominance weakening transfer.

Clearly dominance weakening transfers suggest a very natural ordering of societies in

terms of the inequality between groups as does Pigou-Dalton transfers for inequality of

income between individuals. Let us introduce a graphical representation of this. Consider

the following societies distributed over 3 positions as follows:

S =

"

#$
45 15

40 30

15 55

%

&' S ′ =

"

#$
30 15

45 30

25 55

%

&' S ′′ =

"

#$
5 40

30 25

65 35

%

&'

Figure (1a) plots the cumulative frequency distribution, f : R+ → [0, 1] of Men against

that of Women for S. Similar to the logic of the Lorenz curve, the individuals are ordered in

line with their positions from best to worst. Point A corresponds to the cumulative frequency

of the individuals of the first position only, whereas point B marks the cumulative frequency

of the first two positions. Finally, at point C all individuals are considered.

We call this curve the Dominance curve as it can be interpreted as a visualisation of

the stochastic dominance between groups.9 Formally, the Dominance curve for S is given

9The notion of using a mapping of cumulative distributions to assess the discrepancy or similarity of

two populations is nowhere novel to this paper. The Dominance curve is conceptually equivalent to the

Segregation curve (Duncan and Duncan, 1955), the Concentration curve (Mahalanobis, 1960) or the Dis-

crimination curve (Le Breton et al., 2012). We present this notion merely as another foundation to the index

we characterize.
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Figure 1: Dominance Curve
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A
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B
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0.850.85
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1

(a)

Best
f(M)

f(W )

Worst

S

S ′

S ′′

(b)

by: fS : [0, 1] → [0, 1], fS(m) =
!k−1

i=1 wi + wk
∆m
mk

, where k = max{1, .., i, .., n} such that

m =
!k−1

i=1 mi +∆m with ∆m ≥ 0. Basically, we assume uniform distribution of the groups

within positions. Certainly, fS(
!k

i=1 mi) =
!k

i=1 wi for any k ∈ {1, 2, ..., n}. That is, fS(m)

gives out the cumulative frequency of Women occupying positions that are at least as good

as those m of Men. Figure (1b) depicts the Dominance curves for S ′ and S ′′ as well as S. The

45% line is the equality line; the Dominance curve of a society lies exactly on the equality

line if and only if the frequency distribution of Women and Men are identical. If W ≻SD M,

as it is in S, then the Dominance curve lies fully above the equality line. Conversely, since

in S ′′, M′′ ≻SD W′′, the Dominance curve lies fully below the equality line. Moreover,

the distance to the equality line bears a sense of the intensity of stochastic dominance: the

further away from the line a society is, the higher the level of stochastic dominance between

groups. Consider the society matrices S and S ′: We have M′ = M and we can reach from

S to S ′ by a series of dominance weakening transfers among Women. That is exactly why

S ′ is closer to the equality line than S.

Let us formalize this notion of being closer to the equality line with an ordering relation.

Define the Dominance preorder, ≻D∈ (C × C) such that for S, S ′ with W ≻SD M

and W′ ≻SD M′ (or M ≻SD W and M′ ≻SD W′), fS(m) ≥ fS′
(m) (fS(m) ≤ fS′

(m),

respectively) for all m ∈ [0, 1] with strict inequality for some m ∈ (0, 1). Hence for any

two distinct societies S and S ′ that fully lie on the same side of the equality line, we have

S ≻D S ′ iff S ′ lies in between S and the equality line. It is immediate to see that ≻D is

a strict partial order; it is asymmetric, transitive but not necessarily complete. It captures
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a sense of intensity of the stochastic dominance: Given S ≻D S ′, we deduce that the same

group stochastically dominates the other in both societies, say W ≻SD M. But we also

deduce that the stochastic dominance is stronger in S since for any %x of men occupying

the top of the Men distribution, there is always more women that are in an equal to or better

position than those men in S than S ′. The following proposition summarizes the relationship

between the Dominance preorder and dominance weakening transfers.

Proposition 1 For any two societies S and S ′, if one can reach from S to S ′ by a series of

dominance weakening transfers, then we have S ≻D S ′.

It is worthwhile to note that the converse is not true. One can find two societies such that

one lies in between the other and the equality line, yet it is not possible to reach from one to

the other with dominance weakening transfers. For instance, for the societies below although

fS(m) ≥ fS′
(m) for all m ∈ [0, 1] and W ≻SD M and W′ ≻SD M′, it is not possible to reach

from S to S ′ by dominance weakening transfers. This is because M ≻SD M′, hence moving

from S to S ′ would also require demotion of Men which cannot be achieved by dominance

weakening transfers.

S =

"

#$
30 20

40 30

30 50

%

&' S ′ =

"

#$
30 20

20 20

50 60

%

&'

Dominance preorder suggests a reasonable way to compare societies in terms of the in-

equality between groups. However it can only be used to evaluate very specific societies;

societies with stochastic dominance between groups. One way to extend this partial com-

parison to the domain of all societies is to come up with indices that agree on the ranking

of the Dominance preorder, yet are defined for all possible societies. That is what we do in

the next section.

2 Extending the Partial Ranking: The Net Difference

Index

Given the analogies so far between the Lorenz curve and the Domination curve, a natural

extension of the Dominance preorder can be reached by mimicking the relationship between

the Gini Inequality Index and the Lorenz curve. Gini Inequality Index is equal to the ratio

of the area between the Lorenz curve and the equality line to the area under the equality

line. One crucial difference between the Lorenz curve and the Domination curve is that, the
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latter can reach both above and below the equality line, inducing a sense of ‘direction’ to the

inequality. Taking this into account, we compute ‘the net area’, the area between the curve

and the equality line above the equality line minus the area between them below the equality

line and we arrive at the Net Difference Index (Lieberson, 1976). Let us first formally define

the index, before showing the relationship to the Domination Curve formally in Proposition

2:10

ND(S) =

!
i(Wi

n!
i+1

Mj −Mi

n!
i+1

Wj)

WM

=
(

i

(wi

n(

i+1

mj −mi

n(

i+1

mj)

Given a society S, the Net Difference Index, ND(S), measures inequality in terms of the

number of times a group ranks higher than the other group in pairwise confrontations. We

define a domination by a group as having a member in a better position than a counter-

group member. For instance, a woman in position i occupies a better position than all the

men that are in worse positions than i, thus she creates
!n

i+1 Mj dominations in total. Then,

ND is equal to the net difference in average number of dominations by Women and Men.

Intuitively, ND gives out the ex-ante probability advantage between groups: For a ran-

dom pair of a woman and a man, the difference in probabilities of one individual being in a

better position than the other.

ND is a directional measure. It takes values between −1 and 1, 0 being complete equal-

ity, 1 being maximum inequality advantaging Women and −1 being maximum inequality

advantaging Men. ND respects the ordering suggested by the Dominance preorder, i.e., if

S ≻D S ′ then |ND(S)| > |ND(S ′)|. Finally, Proposition 2 establishes the promised relation

between the Dominance curve and ND:

Proposition 2 ND(S) =
Net area between the Dominance curve and the equality line

The area below the equality line

The proof of Proposition 2 is merely based on the integration of fS.

2.1 Characterizing Properties

A between group ordinal inequality measure is a continuous function H : C → R that at-

taches to each possible society S, a real number indicating the amount of inequality between

10We abuse notation and use
!

i to denote
!n

i=1,
!n

i+1 to denote
!n

j=i+1 and so on.
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the distributions of groups across ordered positions. In this subsection we list and discuss

the properties on H characterizing the Net Difference Index. Let us start with a property

that relates to the previous section:

Strong Transfers (ST): Let S = (W,M) and S ′ = (W′,M′) such that one of the

following holds:

(i) W ≻SD M, (W′)T = (W1, ...,Wi − δ, ...,Wj + δ, ...,Wn) for some δ > 0 and i < j,

M = M′ and W′ ≻SD M′

(ii) W ≻SD M, W = W′ and (M′)T = (M1, ...,Mi + δ, ...,Mj − δ, ...,Mn) for some δ > 0

and i < j, and W′ ≻SD M′

(iii) M ≻SD W, (M′)T = (M1, ...,Mi − δ, ...,Mj + δ, ...,Mn) for some δ > 0 and i < j,

W = W′ and M′ ≻SD W′

(iv) M ≻SD W, M = M′ and (W′)T = (W1, ...,Wi + δ, ...,Wj − δ, ...,Wn) for some δ > 0

and i < j and M′ ≻SD W′.

Then, |H(S ′)| ≤ |H(S)|. Moreover, if Mj ∕= 0 for (i) and (iv) or Wj ∕= 0 for (ii) and (iii),

then |H(S ′)| < |H(S)|.

ST simply states that dominance weakening transfers cannot increase the amount of

inequality. Moreover if a dominance weakening transfer is made to a position that is not null

for the counter group, then inequality decreases.

ND is a measure that takes into account the direction of the inequality between groups.

In Subsection 2.3, we discuss in depth the version of ND without the directionality property,

but now, for characterization purposes we state directionality as a separate property. DR

ensures that exchanging the distributions of Women and Men reverses the direction of the

inequality. The argument for directionality is not too difficult to defend for two social group

settings such as women vs men or white vs non-white origin; one would not only be inter-

ested in how the level of inequality changes over time and space but also whether inequality

always favor the same social group or no.

Directionality (DR): For any S = (W,M), we have H(W,M) = −H(M,W).

The following is a property that we borrow from segregation literature and modify ac-

cording to the ordinal information in our setting. Consider two societies S and S ′, that are

equal to each other in all aspects but there is only one position in S ′ corresponding to two

successive positions with equal women to men ratios in S ′. Hence S has n positions, whereas
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S ′ has n−1. Basically it is as if S ′ is obtained from S by combining two successive positions

with the same group ratio. Successive Proportionate Merges ensures that the inequality

between groups remain unchanged, i.e, combining two successive positions with the same

women to men ratios do not change inequality.

Successive Proportionate Merges (SPM): Let S be a society over n positions such

that ∃ k < n with Wk

Mk
= Wk+1

Mk+1
. Let S ′ be a society over n′ = (n − 1) positions such that

W ′
i = Wi, M

′
i = Mi for i = 1, ..., k−1; W ′

k = Wk+Wk+1, M
′
k = Mk+Mk+1, and W ′

i = Wi+1,

M ′
i = Mi+1 for i = k + 1, ..., n− 1. Then H(S) = H(S ′).

SPM highlights when the ordinal information about the positions becomes idle. For two

successive positions, the fact that one is better than the other is relevant for inequality

only if the relative distributions of the social groups differ over these positions. Notice

that combining two positions is not disregarding all ordinal information regarding these

two positions, it is only disregarding the ordinal information between them: the individuals

occupying these positions are still in better (worse) positions than all the other individuals

they were jointly dominating (dominated by) before.

The following is a technical normalization property that sets the inequality equal to 0 for

societies with only one non-empty position.

Normalization (NORM): For any S such that ∃k ∈ {1, ..., n} withmk = 1 and wk = 1,

then H(S) = 0.

NORM simply normalizes the group inequality to 0 for the societies that possess nothing

to compare.

Decomposability is a crucial property for characterizations of inequality indices in the

entire literature not only because it mathematically helps to pin down the family of indices

but also it has practical implications. Decomposability shows how to aggregate inequalities in

different subparts of the society consistently. Quite often empirical researches are interested

in the concentration of inequality in various parts of the society such as geographical locations

or within different subgroups such as ethnic groups. Decomposable indices allow us to express

the overall inequality in the society as an aggregation of the inequalities in different subparts

of the society.

Remembering the graphical representation of the Net Difference and its similarity to

the relationship between Gini and the Lorenz curve, it is not immediately clear what kind
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of a decomposability property the Net Difference might satisfy.11 Since the focus of our

interest is the inequality between groups, a natural decomposition would be over different

subgroups of the social groups, where a subgroup refers to a subset of a social group. For

instance within the group of Women, two subgroups of interest could be Immigrant Women

and Local Women. To formalize let us consider two subgroups of Women, say, W and

W′. The two subsocieties then would be (W,M) and (W′,M) where the main society is

(W +W′,M). A decomposable index allows the overall inequality between groups to be

expressed as an aggregation of the inequalities in the subsocieties (W,M) and (W′,M).12

We define an additively decomposable index H as a function that allows the overall

inequality in S to be expressed as a weighted sum of the inequalities in the subsocieties; i.e.,

H(W +W′,M) = α(W,W +W ′)H(W,M) + α(W ′,W +W ′)H(W′,M), for some weight

function α(·), that depends on the number of subgroup members in the corresponding society

as well as the number of group members in the overall society.

Certainly the weight function α(·) takes different forms depending on the other properties

satisfied by the index. Below we show that NORM and ST restricts the admissible class of

weights functions to those that could be written as a ratio of a function of the number of

subgroup members to the total number of group members.

Proposition 3 If an additively decomposable index H satisfies NORM and ST, then for

X = W,M , the subpopulation weights can be written as

α(X i, X) =
g(X i)

g(X)
(1)

for some function g(·) that is nowhere equal to 0.

The weight function α(·) for the decomposability of the Net Difference Index unsurpris-

ingly takes the identity function as g(·), i.e., α(W,W +W ′) = W
W+W ′ and α(M,M +M ′) =

M
M+M ′ .

Decomposability (DEC): For any S = (W +W′,M), we have

H(S) =
W

W +W ′H(W,M) +
W ′

W +W ′H(W′,M)

11The Gini Index does not belong to the group of additively decomposable income inequality indices. For

more on decomposability of Gini, see Bourguignon (1979); Dagum (1998); Lambert and Aronson (1993).
12In principle, the subgroups of the other group, say M and M′, can also be of interest. In that case,

overall inequality will be equal to an aggregation of inequalities in (W,M), (W′,M′), (W,M′) and (W′,M).
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and similarly for any S = (W,M+M′) we have

H(S) =
M

M +M ′H(W,M) +
M ′

M +M ′H(W,M′).

We stated DEC for two subsocieties for simplicity, but certainly it implies DEC for more

than two subsocieties.

We are now ready to introduce the main result of the paper. These properties listed not

only are satisfied by ND, but also they do characterize it up to a scalar transformation.

As we will show by Lemma 2 in the Proof of Theorem 1, DEC together with DR implies

NORM, hence we drop NORM from the statement of the theorem.

Theorem 1 H : C → R satisfies ST, DR, SPM and DEC if and only if it is a scalar

transformation of the Net Difference Index.

We discuss independence and the implications of the characterizing properties in the next

subsection.

2.2 Independence and Other Related Indices

All of the characterizing properties are independent. ST is the only property that eliminates

a constant 0 function, i.e., H(S) = 0 satisfies all other properties but ST. DR not only

assigns a direction to the measured inequality but does this in a symmetric way around 0.

An index that evaluates dominations by Women and Men asymmetrically can be an example

to a group inequality function that satisfies all of the other properties but DR. For instance,

H(W,M) =
(

i

(2wi

n(

i+1

mj −mi

n(

i+1

wj).

In the next subsection, we suggest and characterize a version of the index without direction-

ality.

SPM highlights the noncardinality of the variable of interest. For two successive positions,

the fact that one is better than the other is relevant for inequality only if the relative

distributions of the social groups differ over these positions according to SPM. However, if

there is actually more information regarding the ranking of the positions rather than pure

ordinal information, one might consider to use a weighted version of the index:

NDW (S) =
(

i

ci(wi

n(

i+1

mj −mi

n(

i+1

wj)

14



where ci : {1, 2, ..., n} → R is a weighting function or simply a cardinal scale. As long

as ci(·) is a strictly decreasing function, this index would satisfy all the other properties but

SPM.

An example to a function that satisfies all properties but DEC would be the version of

the index that evaluates the difference in total number of dominations rather than averages:

NDA(S) =
(

i

(Wi

n(

i+1

Mj −Mi

n(

i+1

Wj).

It is easy to come up with scenarios where the actual number of individuals within the social

groups matter as much as the distribution over positions. In that case, this absolute version

of the index would serve to the purpose. NDA fails DEC but satisfies all the other properties.

However DA is also a decomposable function; it satisfies an unweighted version of DEC, i.e.,

NDA(W +W′,M) = NDA(W,M) +NDA(W′,M), where the subsocieties are defined as

before. Indeed NDA is characterized by all the other properties in addition to this absolute

decomposability property.

2.3 Symmetry instead of Directionality

Directionality of a between group inequality measure might be a useful property in settings

with only two social groups and when the direction of inequality indeed matters for policy

purposes. However it might not always be a desirable property for a practical, summary

measure of inequality, especially for comparisons across societies with different social groups.

Moreover once extension of the index to multi-group settings is considered, as we do in

Section 3, directionality becomes burdensome. A very natural question becomes whether

we can extend the Dominance preorder without directionality, and hence, we explore the

absolute value of the difference in average number of dominations by Women and Men. Let

us call this measure the Domination Index, D:

D(S) =

)))))

!
i(Wi

n!
i+1

Mj −Mi

n!
i+1

Wj)

WM

)))))

=
)))
(

i

(wi

n(

i+1

mj −mi

n(

i+1

wj)
)))

D takes values between 0 and 1, 0 being complete equality and 1 being maximum in-

equality. The characterization of the Domination Index certainly follows similar principles to

that of the Net Difference Index with two crucial differences. First, we replace Directionality
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with a Symmetry property, ensuring that swapping the distributions of Women and Men

does not change inequality:

Symmetry for Groups (SYM): For any S = (W,M), we haveH(W,M) = H(M,W).

Second, and more critically, we need to modify Decomposability. This is because the

Domination Index is NOT an additively decomposable index. To see why, consider S with

100 Women and 100 Men over 2 positions and its decomposition into two subsocieties as

follows:

S = (W,M) =

*
50 50

50 50

+
→ (W1,M) =

*
50 50

0 50

+
and (W2,M) =

*
0 50

50 50

+

Women and Men are distributed perfectly equally in S. For an index H that satisfies

NORM and SPM, H(S) = 0. However neither (W1,M) nor (W2,M) are equal societies.

For an index H that satisfies ST and takes only nonnegative values, we have H(W1,M) > 0

as well as H(W2,M) > 0. It is not possible to express the inequality in S as a weighted

average of the inequalities in constituent subsocieties. That is why Domination Index is

not additively decomposable. However for certain decompositions, where the inequality in

subsocieties are in the same direction, the overall inequality can indeed be expressed as

a weighted average of the inequalities in constituent subsocieties. Consider the following

example:

D(S ′) = D

*
140 50

60 50

+
=

1

2
D

*
80 50

20 50

+
+

1

2
D

*
60 50

40 50

+

0.2 =
1

2
0.3 +

1

2
0.1

The main difference between the two examples above is the direction of inequality. In the

decomposition of S, Women are more advantageous in the first subsociety, whereas are Men in

the second one. When two subgroups are actually considered together in S, these advantages

cancel out. However in the decomposition of S ′, Women are more advantageous than Men

in both subsocieties; the between group inequality is favoring the same social group, hence

there is no cancelling out when the entire group is considered. That is simply the intuition

behind the decomposability of the Domination Index: D is additively decomposable with

relative population weights as long as the inequalities in the subsocieties are favoring the

same group. Certainly we need to quantify what is meant by ‘favoring’ a group. We classify
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S as of W-type, if inequality is favoring Women as opposed to M-type if inequality is

favoring Men. Formally;

We say that S is of W-type if H(S) = 0 or there exist two positions k, l with k < l

and a ∆ > 0 such that for S = (W,M) with W = (W1, ...,Wk, ...,Wl, ...Wn), we have

H(S) > H(S ′) for any S ′ = (W′,M) with W′ = (W1, ...,Wk − ε, ...,Wl + ε, ...,Wn) and

ε ≤ ∆. We say that S is of M-type if S is not W -type or H(S) = 0. That is to say, S is of

W -type if there exist positions k < l and ∆ > 0 such that demoting at most ∆ amount of

women from k to l decreases inequality as measured by H. If one cannot find such positions

or ∆ as defined, then S is of M -type. If S is such that H(S) = 0, then S is both W -type

and M -type.

The main intuition behind this index-dependent classification is that societies for which

it is possible to decrease inequality (as measured by H) by demoting women would be the

ones that are favoring Women initially; and societies that it is never possible to decrease

inequality by demoting Women would be the ones that are favoring Men. Different indices

will classify societies into different types since they would evaluate not only the level but also

the direction of inequality in different ways. Any index satisfying Within-type Decompos-

ability is decomposable for over same type subsocieties according to its own classification.

It is worth noting that for any H satisfying ST, if in S, W ≻SD M, then S has to be of

W -type, immediate to see by definition of ST. Similarly, if M ≻SD W instead, then S is

of M -type. Given H, if S is not of one type, then it has to be of the other by definition.

Moreover, we have H(S) = 0 if and only if S is of both W -type and M -type.

Within-type Decomposability (T-DEC): For any S = (W +W′,M) ∈ C, we have

H(S) =
W

W +W ′H(W,M) +
W ′

W +W ′H(W′,M)

as long as (W,M) and (W′,M) are of the same type. Similarly for any S = (W,M+M′) ∈
C we have

H(S) =
M

M +M ′H(W,M) +
M ′

M +M ′H(W,M′)

as long as (W,M) and (W,M′) are of the same type.

Theorem 2 characterizes D with ST, NORM, SYM properties from before, jointly with

the newly introduced SYM and T-DEC.

Theorem 2 H : C → R+ satisfies ST, SYM, NORM, SPM and T-DEC if and only if it is

a positive scalar transformation of the Domination Index.
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3 Concluding Remarks and Possible Extensions

Unequal distribution of social groups across different levels of welfare is quite commonly

observed. When we go beyond income inequality and consider non-cardinal welfare deter-

mining variables such as education, health, occupation or subjective well-being, we run short

of well-developed inequality measurement techniques. This paper aimed to analyze an intu-

itive and well-founded methodology to evaluate non-income inequalities between two social

groups without appealing to additional cardinalisation assumptions. We conclude with two

possible extensions.

A natural way to extend the measurement method analysed in this paper to settings

with more than two groups is to consider an aggregation of the differences in pairwise dom-

inations for each pair of groups. When there are more than two social groups, we first

compute the average difference in number of dominations for each pair. The average of these

average differences would be the multi-group Domination Index. Let us state this idea for-

mally: Let G be a set of social groups with cardinality G. Then a society matrix S with G

groups will be of dimension n×G and the multi-group Domination Index would be equal to
1
2G

!
M∈G

!
N∈G D(M,N), where M and N denote the distributions of groups M and N in

S respectively. Notice this still captures the extra probability that on a random selection of a

pair of individuals from different groups, the member of one group rank-dominates the other.

The foundational analysis of this multi-group Domination Index requires further research.

Having focused our attention to ordinal inequalities, we assumed full comparability of

the categories. A second extension can be suggested for only partially comparable cate-

gories. Consider the attributes of an occupation such as wage, prestige, working conditions,

etc. An occupation may have quite challenging working conditions, even resulting in health

troubles, although offering a very high level of wage. How this occupation would compare

to one with better working conditions but lower pay is not obvious. Hence taking multiple

attributes into account might result in only a partial ordering of occupations rather than a

linear one. Similarly, consider a setting where two aspects of welfare are taken into account

simultaneously in determining the positions, such as health and happiness. Both health

and happiness data are examples to ordinal categorical data, however taking both of them

into account at the same time would result in partial ordering of the positions (if we are to

avoid extra assumptions such as having more health is better than having more happiness).

Hence the question becomes how to compare distributions of groups over partially ordered

categories. One suggestion we have is the Maximum Group Inequality index: Formally, let

PI be a strict partial order over a set of positions I. A society will be a pair of elements

(S, PI), where S is the usual society matrix. Let LPI denote the set of linear extensions
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of P over I, i.e.; the set of complete, transitive and asymmetric binary relations over I
with for all LI in LPI , iLj if iP j. Then, Maximum Group Inequality Index, M , will be:

M(S, PI) = maxLI∈LPI D(SLI), where SLI refers to the society matrix with the linear order

LI . As before, M takes values in [0, 1]. If there is no missing information about the ordering

of the positions, M is equal to D. In case of some missing information, M gives the maxi-

mum possible level of group inequality, which refers to the worst-case scenario of the society.

If two positions remain uncompared by the original ordering, this will be because of the fact

that there is no unique universal way of ranking these positions. Considering the worst-case

scenario is consistent with a Rawlsian framework of welfare. The algorithmic structure and

behavior of the Maximum Group Inequality Index remain to be explored.
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A Appendix

Proof of Proposition 1 Consider S and S ′ as defined and assume that one can reach from

S to S ′ by a series of dominance weakening transfers. Assume without loss of generality

that W ≻SD M. Then by definition, for any i,
!i

1 wk ≥
!k

1 mk and
!i

1 w
′
k ≥

!i
1 m

′
k

with at least one strict inequality for each society. Moreover, since by demoting women

and promoting men one can reach from S to S ′, we have for any i,
!i

1 wk ≥
!i

1 w
′
k

and
!i

1 m
′
k ≥

!i
1 mk with at least one strict inequality. Combining these, we arrive at

!i
1 wk ≥

!i
1 w

′
k ≥

!i
1 m

′
k ≥

!i
1 mk, which directly implies that both curves lie over the

equality line and S ′ lies in between S and the equality line as claimed. □

Proof of Proposition 2 The proof is by integration. First notice that for any society S with

n > 1, the function described by the Dominance Curve, fS : [0, 1] → [0, 1] can equivalently

be expressed as

fS(x) =

,
-----------.

-----------/

w1

m1
x if x ≤ m1

w2

m2
x+ w1m2−w2m1

m2
if m1 ≤ x ≤ m1 +m2

... ...

wi

mi
x+

mi
!i−1

1 wj−wi
!i−1

1 mj

mi
if

!i−1
1 mj ≤ x ≤

!i
1 mj

... ...

wn

mn
x+

mn
!n−1

1 wj−wi
!n−1

1 mj

mn
if

!n−1
1 mj ≤ x ≤ 1

Now consider a society S whose Domination curve lies fully above the equality line, such

as the one in Figure 2a.

If n = 1, the Dominance Curve lies exactly on the equality line and ND(S) = 0. Let

n > 1.
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Figure 2: Net Difference Index and Dominance Curve
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The area A between the Dominance Curve and the equality line would be:

A =

0 m1

0

w1

m1

xdx+
n(

i=2

0 !i
1 mj

!i−1
1 mj

wi

mi

x+
mi

!i−1
1 wj − wi

!i−1
1 mj

mi

dx−
0 m

0

w

m
xdx

=
w1m

2
1

2m1

+
n(

2

wi

2mi

[(
i(

1

mj)
2 − (

i−1(

1

mj)
2] +

n(

i=1

mi

!i−1
1 wj − wi

!i−1
1 mj

mi

mi −
wm

2

=
1

2
[

n(

i=1

wi(
i(

1

mj +
i−1(

1

mj)− wm] +
n(

i=1

(mi

i−1(

1

wj − wi

i−1(

1

mj)

=
1

2
(

n(

i

wi

i(

1

mj +
n(

1

wi

i−1(

1

mj −
n(

1

wi

n(

1

mj) +
n(

i=1

(mi

i−1(

1

wj − wi

i−1(

1

mj)

=
1

2

n(

i=1

(mi

i−1(

1

wj − wi

i−1(

1

mj) =
1

2

n(

i=1

(wi

n(

i+1

mj −mi

n(

i+1

wj)

=
1

2
ND(S)

Since the area below the equality line is equal to 1
2
, we prove the claim for S. Now

consider any S, whose dominance curve might also lie below the equality line, like the one

in Figure 2b. The proof above also applies in this case. To see that consider the net area

in Figure 2b: A1 − A2 =
1 1

0
fS(x).dx −

1 1

0
xdx = (A1 + A3) − (A2 + A3), establishing the

proof. □.
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Proof of Proposition 3 Take any S and let H be as defined. First consider the following

decomposition into subsocieties

H(S) =α(W1,W )H

"

######$

W1 M1

0 M2

0 M3

· · · · · ·
0 Mn

%

&&&&&&'
+ α(W2,W )

"

######$

0 M1

W2 M2

0 M3

· · · · · ·
0 Mn

%

&&&&&&'
+ α(

n(

3

Wi,W )

"

######$

0 M1

0 M2

W3 M3

· · · · · ·
Wn Mn

%

&&&&&&'
.

(2)

Now consider the following decomposition

H(S) =α(
2(

1

Wi,W )H

"

######$

W1 M1

W2 M2

0 M3

· · · · · ·
0 Mn

%

&&&&&&'
+ α(

n(

3

Wi,W )

"

######$

0 M1

0 M2

W3 M3

· · · · · ·
Wn Mn

%

&&&&&&'

=α(
2(

1

Wi,W )α(W1,
2(

1

Wi)H

"

######$

W1 M1

0 M2

0 M3

· · · · · ·
0 Mn

%

&&&&&&'
+ α(

2(

1

Wi,W )α(W2,
2(

1

Wi)

"

######$

0 M1

W2 M2

0 M3

· · · · · ·
0 Mn

%

&&&&&&'

+ α(
n(

3

Wi,W )

"

######$

0 M1

0 M2

W3 M3

· · · · · ·
Wn Mn

%

&&&&&&'
. (3)
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Since H(S) in (2) and (3) is the same, when we subtract (3) from (2), there remains

[α(W1,W )− α(
2(

1

Wi,W )α(W1,

2(

1

Wi)]H

"

######$

W1 M1

0 M2

0 M3

· · · · · ·
0 Mn

%

&&&&&&'

+ [α(W2,W )− α(
2(

1

Wi,W )α(W2,

2(

1

Wi)]

"

######$

0 M1

W2 M2

0 M3

· · · · · ·
0 Mn

%

&&&&&&'
= 0. (4)

Since α(·) is independent of M, and since this equality has to hold for all S, consider M be

such that M1 = W1 and Mi = 0 for all i > 1. In this case, the inequality measured by H in

the first subsociety in 4 will be equal to 0 by NORM. Notice that the inequality measured

by H in the second one cannot be equal to 0 by ST. Hence we have

α(W2,W )− α(W2,
2(

1

Wi)α(
2(

1

Wi,W ) = 0

or in general:

α(Wi,W )− α(Wi,Wi +Wj)α(Wi +Wj,W ) = 0.

Solving the functional equation α(x, y) = α(x, z)α(z, y), we arrive at

α(Wi,W ) =
g(Wi)

g(W )

for some function g(·) that is nowhere 0. Notice that the initial decomposition into subgroups

is without loss of generality. For any subgroup Wi of W, we can first decompose W into two

subgroups as follows: Wi plus ∆ women from some other position and the rest of Women. In

a second stage allocating Wi and ∆ women to different subgroups would allow us replicate

the steps above, establishing the general statement that

α(W i,W ) =
g(W i)

g(W )

as claimed. Since additive decomposability is symmetric in social groups, the same holds for

a decomposition over subgroups of Men. □
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Proof of Theorem 1: We omit the proof of necessity part. To prove the sufficiency part,

first we introduce a couple of lemmas.

Lemma 1 Let S = (W,M) and S ′ = (αW, βM) for some α, β > 0. DEC implies that

H(S) = H(S ′).

Proof: Consider any H satisfying DEC and any society S = (W,M). (i) Let α ∈ N++.

By using induction, we show that H(αW,M) = H(W,M). For α = 2, DEC implies

H(W,M) = 1
2
H(W,M) + 1

2
H(W,M) = H(2W,M). Now assume the statement holds for

(α−1), i.e.: H((α−1)W,M) = H(W,M). By DEC, α−1
α

H((α−1)W,M)+ 1
α
H(W,M) =

H(αW,M). But then, by the inductive argument: α−1
α

H(W,M)+ 1
α
H(W,M) = H(W,M) =

H(αW,M) as claimed. (ii) Now consider α ∈ Q++. Let α = p
q
for some p, q ∈ N++.

Then, repeated application of DEC ensures: q p/q
p
H(p

q
W,M) = H(pW,M). Since for

p ∈ N++ we have H(pW,M) = H(W,M), we arrive; H(p
q
W,M) = H(W,M) as claimed.

(iii) Finally let α ∈ R++. Since every irrational number can be expressed as the limit

value of a sequence of rational numbers, let α = lim qi for some qi ∈ Q++ ∀i. Then,

H(αW,M) = H(lim qiW,M) = limH(qiW,M) by continuity of H. Since we have already

showed that for any rational α the statement holds, we have: H(αW,M) = H(W,M). The

same argumentation over decomposition for H(W, βM) establishes the proof. □

Lemma 2 DEC and DR implies NORM.

Proof: Take S such that ∃k ∈ {1, ..., n} such that mk = 1 and wk = 1. Then by

Lemma 1 H(W,M) = H( 1
W
W, 1

M
M) = H(w,m), where w = m. But then by DR,

H(w,m) = −H(m,w) = 0. □

Now we start with the proof of sufficiency. Let H be as defined and take any S ∈ C

such that for all i, Wi ∕= 0 ∕= Mi. If n = 1, then by NORM, H(S) = 0. Let n ≥ 2.

Denote ri =
Wi

Mi
for all i. The proof is mainly based on decomposition of S into elementary

subsocities. However the decomposition applied depends on the ranking of ri and ri+1 for

each i.

First, let r1 ≥ r2 and consider the following decomposition of H(S)

H

"

###$

W1 M1

W2 M2

... ...

Wn Mn

%

&&&'
=

W ′
1

W
H

"

###$

W ′
1 M1

0 M2

... ...

0 Mn

%

&&&'
+

W −W ′
1

W
H

"

###$

W1 −W ′
1 M1

W2 M2

... ...

Wn Mn

%

&&&'
(5)
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where W ′
1 is such that,

W1 −W ′
1

M1

=
W2

M2

= r2

W ′
1M2 = W1M2 −M1W2.

Repeated application of SPM for the first subsociety in (5), as Wj/Mj = 0 for all j > 1,

and again, SPM for the second subsociety yields

H(S) =
W ′

1

W
H

*
W ′

1 M1

0
!n

2 Mj

+
+

W −W ′
1

W
H

"

###$

W1 +W2 −W ′
1 M1 +M2

W3 M3

... ...

Wn Mn

%

&&&'
. (6)

Finally, we decompose the first subsociety in (6) once more, yielding: H(S) =

W ′
1

W

2!n
2 Mj

M
H

*
W ′

1 0

0
!n

2 Mj

+
+
M1

M
H

*
W ′

1 M1

0 0

+3
+
W −W ′

1

W
H

"

###$

W1 +W2 −W ′
1 M1 +M2

W3 M3

... ...

Wn Mn

%

&&&'
.

(7)

Since by Lemma 1, H(
W ′

1 0

0
!n

2 Mj
) = H( 1 0

0 1 ) and by NORM, H(W ′
1 M1

0 0
) = 0, we arrive at

H(S) =
W ′

1

W

!n
2 Mj

M
H

*
1 0

0 1

+
+

W −W ′
1

W
H

"

###$

W1 +W2 −W ′
1 M1 +M2

W3 M3

... ...

Wn Mn

%

&&&'
. (8)

Next we decompose the second subsociety in (8) in a similar manner. There are two

possible cases: In S, either r2 ≥ r3 or r2 < r3. The decomposition we apply depends on the

ordering of r2 and r3 in S.

Case 1: Let r2 ≥ r3. We have
(W1+W2−W ′

1)

M1+M2
≥ W3

M3
. Then, H

4W1+W2−W ′
1 M1+M2

... ...
Wn Mn

5
=

=
W ′

2

W −W ′
1

H

"

###$

W ′
2 M1 +M2

0 M3

... ...

0 Mn

%

&&&'
+

W −
!2

1 W
′
i

W −W ′
1

H

"

###$

!2
1 Wi −

!2
1 W

′
i M1 +M2

W3 M3

... ...

Wn Mn

%

&&&'
(9)

27



where W ′
2 is such that

!2
1 Wi −

!2
1 W

′
i

M1 +M2

=
W3

M3

= r3. (10)

SPM, NORM and further decomposition of the first subsociety in (9) similar to the one

in (7), and substitution into (8) results in

H(S) =
W ′

1

W

!n
2 Mj

M
H

*
1 0

0 1

+
+

W −W ′
1

W

2
W ′

2

W −W ′
1

!n
3 Mj

M
H

*
1 0

0 1

+3

+
W −W ′

1

W

W −
!2

1 W
′
i

W −W ′
1

H

"

###$

!3
1 Wj −

!2
1 W

′
j

!3
1 Mj

W4 M4

... ...

Wn Mn

%

&&&'
. (11)

Finally, simplification yields

H(S) =
W ′

1

W

!n
2 Mj

M
H

*
1 0

0 1

+
+

W ′
2

W

!n
3 Mj

M
H

*
1 0

0 1

+

+
W −

!2
1 W

′
i

W
H

"

###$

!3
1 Wj −

!2
1 W

′
j

!3
1 Mj

W4 M4

... ...

Wn Mn

%

&&&'
. (12)

Case 2: Let r2 < r3. We have
(W1+W2−W ′

1)

M1+M2
< W3

M3
. Then, H

4W1+W2−W ′
1 M1+M2

... ...
Wn Mn

5
=

=
M ′

2

M
H

"

###$

W1 +W2 −W ′
1 M ′

2

W3 0

... ...

Wn 0

%

&&&'
+

M −M ′
2

M
H

"

###$

W1 +W2 −W ′
1 M1 +M2 −M ′

2

W3 M3

... ...

Wn Mn

%

&&&'
(13)

where M ′
2 is such that

!2
1 Wi −W ′

1

M1 +M2 −M ′
2

=
W3

M3

= r3. (14)

Repeated application of SPM for the first subsociety in (13) and again, SPM for the
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second subsociety yields H
4W1+W2−W ′

1 M1+M2
... ...
Wn Mn

5
=

=
M ′

2

M
H

*!2
1 Wi −W ′

1 M ′
2!n

3 Wi 0

+
+

M −M ′
2

M
H

"

###$

!3
1 Wi −W ′

1

!3
1 Mj −M ′

2

W4 M4

... ...

Wn Mn

%

&&&'
. (15)

Finally, we decompose the first subsociety in (15) once more, yieldingH
4!2

1 Wi−W ′
1 M1+M2

... ...
Wn Mn

5
=

=
M ′

2

M

2 !n
3 Wi

W −W ′
1

H

*
0 M ′

2!n
3 Wi 0

+
+

!2
1 Wi −W ′

1

W −W ′
1

H

*!2
1 Wi −W ′

1 M ′
2

0 0

+3

+
M −M ′

2

M
H

"

###$

!3
1 Wi −W ′

1

!3
1 Mj −M ′

2

W4 M4

... ...

Wn Mn

%

&&&'
. (16)

Since by Lemma 1, H
4 0 M ′

2!n
3 Wi 0 ) = H( 0 1

1 0 ) and by NORM, H(
!2

1 Wi−W ′
1 M ′

2
0 0

) = 0, we

arrive at H
4!2

1 Wi−W ′
1 M1+M2

... ...
Wn Mn

5
=

=
M ′

2

M

!n
3 Wi

W −W ′
1

H

*
0 1

1 0

+
+

M −M ′
2

M
H

"

###$

!3
1 Wi −W ′

1

!3
1 Mj −M ′

2

W4 M4

... ...

Wn Mn

%

&&&'
. (17)

Plugging (17) into (8) results in

H(S) =
W ′

1

W

!n
2 Mj

M
H

*
1 0

0 1

+
+

!n
3 Wi

W

M ′
2

M
H

*
0 1

1 0

+

+
W −W ′

1

W

M −M ′
2

M
H

"

###$

!3
1 Wi −W ′

1

!3
1 Mj −M ′

2

W4 M4

... ...

Wn Mn

%

&&&'
. (18)

A comparison of equations (12) and (18) makes it clear that for all i < n with ri ≥ ri+1,

the contribution of decomposition of row i as demonstrated to H(S) is equal to

W ′
i

!n
i+1 Mj

WM
H

*
1 0

0 1

+
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whereas for all i < n with ri < ri+1, the contribution to H(S) is

M ′
i

!n
i+1 Wj

WM
H

*
0 1

1 0

+

where W ′
i and M ′

i is suitably defined so that SPM can be applied after the decomposition,

as in equations (10) and (14). Thus, repetition of appropriate decompositions (n− 2) times

results in:

H(S) =

n−1!

ri≥ri+1

W ′
i

W

!n
i+1 Mj

M
H

*
1 0

0 1

+
+

n−1!

ri<ri+1

M ′
i

M

!n
i+1 Wj

W
H

*
0 1

1 0

+

+

W −
n−1!

ri≥ri+1

W ′
i

W

M −
n−1!

ri<ri+1

M ′
i

M
H

"

#$

6 n−1!
1

Wi −
n−1!

ri≥ri+1

W ′
1

7 6 n−1!
1

Mj −
n−1!

ri<ri+1

M ′
2

7

Wn Mn

%

&'

(19)

Now, first, let rn−1 ≥ rn. Then further decomposition of the third subsociety in (19) in

conjunction with SPM, NORM and Lemma 1 yields

H(S) =

n−1!

ri≥ri+1

W ′
i

W

!n
i+1 Mj

M
H

*
1 0

0 1

+
+

n−1!

ri<ri+1

M ′
i

M

!n
i+1 Wj

W
H

*
0 1

1 0

+

+

W −
n−1!

ri≥ri+1

W ′
i

W

M −
n−1!

ri<ri+1

M ′
i

M

Wn

W −
n−1!

ri≥ri+1

W ′
i

Mn

M −
n−1!

ri<ri+1

M ′
i

H

*
1 0

0 1

+

=

n−1!

ri≥ri+1

W ′
i

W

!n
i+1 Mj

M
H

*
1 0

0 1

+
+

n−1!

ri<ri+1

M ′
i

M

!n
i+1 Wj

W
H

*
0 1

1 0

+

+
W ′

n

W

Mn

M

*
1 0

0 1

+

=

n!

ri≥ri+1

W ′
i

W

!n
i+1 Mj

M
H

*
1 0

0 1

+
+

n!

ri<ri+1

M ′
i

M

!n
i+1 Wj

W
H

*
0 1

1 0

+
. (20)
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It is immediate to see that the other case with rn−1 < rn also implies equation (20). By DR,

we have

H

*
1 0

0 1

+
= K ⇒ H

*
0 1

1 0

+
= −K

for some K ∈ R. NORM and ST imply that K ∕= 0. Thus, equation (20) becomes

H(S) =

2 n!

ri≥ri+1

W ′
i

W

!n
i+1 Mj

M
−

n!

ri<ri+1

M ′
i

M

!n
i+1 Wj

W

3
K (21)

As demonstrated by equations (10) and (14), W ′
i and M ′

i are chosen such that for all

i < n:

i!
1

Wj −
i!

rj≥rj+1

W ′
j

i!
1

Mj −
i!

rj<rj+1

M ′
j

=
Wi+1

Mi+1

Mi+1

i(

rj≥rj+1

W ′
j −Wi+1

i(

rj<rj+1

M ′
j = Mi+1

i(

1

Wj −Wi+1

i(

1

Mj. (22)

Summation of equation (22) over all i < n finally gives

n−1!

1

8
Mi+1

i(

rj≥rj+1

W ′
j −Wi+1

i(

rj<rj+1

M ′
j

9
=

n−1!

1

8
Mi+1

i(

1

Wj −Wi+1

i(

1

Mj

9

n!

ri≥ri+1

W ′
i

n(

i+1

Mj −

n!

ri<ri+1

M ′
i

n(

i+1

Wj =

n!

1

Wi

n(

i+1

Mj −

n!

1

Mi

n(

i+1

Wj.

Substitution into equation (21) yields

H(S) =

2 n!

1

*
Wi

W

!n
i+1 Mj

M
− Mi

M

!n
i+1 Wj

W

+ 3
K

establishing the functional form of H for any S ∈ C with Wi ∕= 0 ∕= Mi for all i. Now take

any S ∈ C and consider S ′ such that for all i with Wi ∕= 0 ∕= Mi, W
′
i = Wi and M ′

i = Mi;

31



for all i with Wi = 0, W ′
i = ε and for all i with Mi = 0, M ′

i = ε for some ε in a small

neighborhood of 0. By continuity of H

H(S) = lim
ε→0

H(S ′)

= lim
ε→0

2 n!

1

*
W ′

i

W ′

!n
i+1 M

′
j

M ′ − M ′
i

M ′

!n
i+1 W

′
j

W ′

+ 3
K

=

2 n!

1

*
Wi

W

!n
i+1 Mj

M
− Mi

M

!n
i+1 Wj

W

+ 3
K.

□

Proof of Theorem 2: We omit the proof of necessity. To prove sufficiency, we introduce a

few lemmas.

Lemma 3 Let S = (W,M) and S ′ = (αW, βM) for some α, β > 0. T-DEC implies that

H(S) = H(S ′).

Proof: The proof is an immediate implication of the proof of Lemma 1 of Theorem 1 and

the fact that all subsocieties considered are of the same type. □

Lemma 4 Let S be such that W ≻SD M. ST implies that S is of W -type.

Proof: Immediate by definition of stochastic dominance and ST. □

Lemma 5 Take any S and S ′ such that S = (W,M) and S ′ = (αW, βM) for some α, β >

0. If S is of W -type (M-type), so is S ′.

Proof: The proof is immediate by definition of W -type (M -type): If we can find k, l,∆ as

required for S, then k, l and α∆ would suffice to show that S ′ is also of W -type or not. □

Now we start with the proof of Theorem 2. Let H be as defined and take any S ∈ C. If

n = 1, then by NORM, H(S) = 0. Let n ≥ 2.

In Step 1, we consider a very specific type of society and derive the functional form of H

for it. Define S ∈ C as W-perfect if Wi > Mi > 0 for all i and ∞ > r1 > r2 > · · · > rn > 0,

where ri =
Wi

Mi
.
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Step 1: Take S ∈ C that is W-perfect: We first show that S is of W -type. By Lemma

3, H(W,M) = H(w,m). By definition of W -perfection, for any k = 1, . . . , n − 1 and any

j = k + 1, . . . , n, we have

WkMj > WjMk

WkMj

WM
>

WjMk

WM

wkmj > wjmk

wk

n(

k+1

mj > mk

n(

k+1

wj. (23)

Since this holds for each k = 1, . . . , n− 1, summing over all k

k(

1

(wi

n(

k+1

mj) >
k(

1

(mi

n(

k+1

wj)

k(

1

wi(1−
k(

1

mj) >
k(

1

mi(1−
k(

1

wj)

k(

1

wi −
k(

1

wi

k(

1

mj >
k(

1

mi −
k(

1

mi

k(

1

wj

k(

1

wi >
k(

1

mi. (24)

Hence W ≻SD M. Then by Lemma 4, S is of W -type. Hence any W -perfect S is of W -type.

Next, we start with the decomposition of S as in the Proof of Theorem 1. W-perfectness of

S will allow the constituent subsocieties to be of W -type.

As r1 > r2, T-DEC implies

H

"

###$

W1 M1

W2 M2

... ...

Wn Mn

%

&&&'
=

W ′
1

W
H

"

###$

W ′
1 M1

0 M2

... ...

0 Mn

%

&&&'
+

W −W ′
1

W
H

"

###$

W1 −W ′
1 M1

W2 M2

... ...

Wn Mn

%

&&&'
(25)

where W ′
1 is such that,

W1 −W ′
1

M1

=
W2

M2

= r2.

Notice that the first subsociety in (25) is of W -type by stochastic dominance and Lemma

4 whereas the second subsociety is of W -type by the argument in equations (23), (24),
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stochastic dominance and Lemma 4. Hence T-DEC is applicable. Repeated application of

SPM for the first subsociety in (25), as Wj/Mj = 0 for all j > 1, and again, SPM for the

second subsociety yields

H(S) =
W ′

1

W
H

*
W ′

1 M1

0
!n

2 Mj

+
+

W −W ′
1

W
H

"

###$

W1 +W2 −W ′
1 M1 +M2

W3 M3

... ...

Wn Mn

%

&&&'
. (26)

Finally, we decompose the first subsociety in (26) once more, yielding H(S) =

W ′
1

W

2!n
2 Mj

M
H

*
W ′

1 0

0
!n

2 Mj

+
+
M1

M
H

*
W ′

1 M1

0 0

+3
+
W −W ′

1

W
H

"

###$

W1 +W2 −W ′
1 M1 +M2

W3 M3

... ...

Wn Mn

%

&&&'
.

Notice that T-DEC is applicable, since once again by Lemma 4, (
W ′

1 0

0
!n

2 Mj
) is of W -type

and by NORM, H(W ′
1 M1

0 0
) = 0 and hence it is also of W -type. By Lemma 3, H(

W ′
1 0

0
!n

2 Mj
) =

H( 1 0
0 1 ), yielding

H(S) =
W ′

1

W

!n
2 Mj

M
H

*
1 0

0 1

+
+

W −W ′
1

W
H

"

###$

W1 +W2 −W ′
1 M1 +M2

W3 M3

... ...

Wn Mn

%

&&&'
.

The rest of the proof of this Step can be established by replicating the appropriate

decompositions n−1 times, as demonstrated in the Proof of Theorem 1. T-DEC is applicable

at all of the following steps as all constituent subsocieties will be of W -type by the fact that

ri > ri+1 for all i < n, by stochastic dominance, Lemma 4, NORM and Lemma 3 as

demonstrated above. Then, as established in the proof of Theorem 2, we end up with

H(S) =

2 n!

1

*
Wi

W

!n
i+1 Mj

M
− Mi

M

!n
i+1 Wj

W

+ 3
H

*
1 0

0 1

+

concluding Step 1 -notice that the term inside the brackets is positive. In Step 2, we derive

the functional form of H for M -perfect societies: S is said to be M -perfect if Mi > Wi > 0

34



for all i and 0 < r1 < r2 < . . . < rI < ∞.

Step 2: Take S ∈ C that is M-perfect: Consider S ′ = (W′,M′) with W′ = M and

M′ = W. Thus S ′ is W -perfect. By SYM, H(S ′) = H(S). But then, by Step 1, we have

H(S) = H(S ′)

=

2 n!

1

*
W ′

i

W ′

!n
i+1 M

′
j

M ′ − M ′
i

M ′

!n
i+1 W

′
j

W ′

+ 3
H

*
1 0

0 1

+

=

2 n!

1

*
Mi

M

!n
i+1 Wj

W
− Wi

W

!n
i+1 Mj

M

+ 3
H

*
1 0

0 1

+

= −
2 n!

1

*
Wi

W

!n
i+1 Mj

M
− Mi

M

!n
i+1 Wj

W

+ 3
H

*
1 0

0 1

+

concluding Step 2 -notice that the term inside the brackets in the last line is negative. Hence

we have driven the functional form of H for very specific types of societies. In the following

two steps we show that this functional form actually extends to any society of any type.

Step 3: Take S ∈ C of W -type:

First let S = (W,M) be such that Mi ≥ 1 for all i and let T = W + M . Consider

S ′ = (W′,M′) = (W′,M) and S ′′ = (W′′,M′′) = (W +W′,M), where W′ is such that for

all i, W ′
i =

!n+2−i
k=2 T k.

We will first show that both S ′ and S ′′ are W -perfect and hence, of W -type. Let us start

with S ′: Notice that for all i, we have W ′
i > M ′

i > 0. S ′ is W -perfect since for any i < n,

r′i>r′i+1 holds as shown below

r′i =
W ′

i

M ′
i

>
W ′

i+1

M ′
i+1

= r′i+1

!n+2−i
k=2 T k

Mi

>

!n+1−i
k=2 T k

Mi+1

T 2 + T
!n+1−i

k=2 T k

Mi

>
T
!n+1−i

k=2 T k

Mi

>

!n+1−i
k=2 T k

Mi+1

T

Mi

>
1

Mi+1

follows from Mi ≥ 1 for all i, establishing W -perfectness of S ′. Now consider S ′′ as defined.
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For any i, we have W ′′
i > M ′′

i > 0. For any i < n, r′′i >r′′i+1 holds as shown below

r′′i =
W ′′

i

M ′′
i

>
W ′′

i+1

M ′′
i+1

= r′′i+1

Wi +W ′
i

Mi

>
Wi+1 +W ′

i+1

Mi+1

Wi +
!n+2−i

k=2 T k

Mi

>
Wi+1 +

!n+1−i
k=2 T k

Mi+1

Mi+1Wi +Mi+1

n+2−i(

k=2

T k > MiWi+1 +Mi

n+1−i(

k=2

T k

Mi+1Wi +Mi+1T
2 +Mi+1T

n+1−i(

k=2

T k > MiWi+1 +Mi

n+1−i(

k=2

T k

follows from Mi ≥ 1 for all i, Mi+1T
2 > MiWi+1 and Mi+1T

!n+1−i
k=2 T k > Mi

!n+1−i
k=2 T k

establishing W -perfectness of S ′′. As shown in Step 1, any W -perfect S is of W -type. Hence

both S ′ and S ′′ are of W -type. But then, Step 1 and T-DEC implies

H(S ′′) =
W

W +W ′H(S) +
W ′

W +W ′H(S ′).

H(S) =
W +W ′

W
H(S ′′)− W ′

W
H(S ′)

H(S) =
W +W ′

W

2 n!

1

*
(Wi +W ′

i )

W +W ′

!n
i+1 Mj

M
− Mi

M

!n
i+1(Wj +W ′

j)

W +W ′

+ 3
H

*
1 0

0 1

+

=− W ′

W

2 n!

1

*
W ′

i

W ′

!n
i+1 Mj

M
− Mi

M

!n
i+1 W

′
j

W ′

+ 3
H

*
1 0

0 1

+

=

2 n!

1

*
Wi

W

!n
i+1 Mj

M
− Mi

M

!n
i+1 Wj

W

+ 3
H

*
1 0

0 1

+
. (27)

Hence we have established the functional form for any W -type S ∈ C with Mi ≥ 1 for

all i. Now, take any W -type S ∈ C with Mi > 0 for all i and consider S ′ such that W′ = W

and M′ = 1"
{j:Mj<1} Mj

M. Hence, M ′
i ≥ 1 for all i. By Lemma 3, H(S ′) = H(S) and hence
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H(S ′) =H(S) =

2 n!

1

*
Wi

W

!n
i+1 Mj

M
− Mi

M

!n
i+1 Wj

W

+ 3
H

*
1 0

0 1

+

=

2 n!

1

*
Wi

W

!n
i+1

1"
{j:Mj<1} Mj

Mj

1"
{j:Mj<1} Mj

M
−

1"
{j:Mj<1} Mj

Mi

1"
{j:Mj<1} Mj

M

!n
i+1 Wj

W

+ 3
H

*
1 0

0 1

+

=

2 n!

1

*
Wi

W

!n
i+1 M

′
j

M ′ − M ′
i

M ′

!n
i+1 Wj

W

+ 3
H

*
1 0

0 1

+
.

Finally take any W -type S ∈ C. Consider S ′ such that W′ = W and for all i with

Mi ∕= 0, M ′
i = Mi and for all i with Mi = 0, M ′

i = ε for some ε in a small neighborhood of

0. By continuity of H, we have

H(S) = lim
ε→0

H(S ′)

= lim
ε→0

2 n!

1

*
Wi

W

!n
i+1 M

′
j

M ′ − M ′
i

M ′

!n
i+1 Wj

W

+ 3
H

*
1 0

0 1

+

=

2 n!

1

*
Wi

W

!n
i+1 Mj

M
− Mi

M

!n
i+1 Wj

W

+ 3
H

*
1 0

0 1

+

establishing the functional form for any W -type S ∈ C, and concluding Step 3. If instead

we consider any M -type S ∈ C, then Step 2 and symmetric argumentation to Step 3 would

yield

H(S) =

2 n!

1

*
Mi

M

!n
i+1 Wj

W
− Wi

W

!n
i+1 Mj

M

+ 3
H

*
1 0

0 1

+

Since by construction each S is of W -type or of M -type, for any society S, we arrive

H(S) =

)))))

n!

1

*
Wi

W

!n
i+1 Mj

M
− Mi

M

!n
i+1 Wj

W

+ ))))) H
*
1 0

0 1

+
.

By ST, H is a nonzero function. Thus, H(1, 0; 0, 1) is a strictly positive real number. □
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